La掺杂Bi2WO6光催化剂的水热制备工艺
Hydrothermal Preparation of La-Doped Bi2WO6 Photocatalyst
DOI: 10.12677/MS.2017.73035, PDF, HTML, XML, 下载: 1,430  浏览: 1,702  科研立项经费支持
作者: 沈俊玲, 姜洪泉:哈尔滨师范大学功能材料设计合成与绿色催化黑龙江省高校重点实验室,黑龙江 哈尔滨
关键词: Bi2WO6La掺杂4-氯酚光催化Bi2WO6 La-Doping 4-Chlorophenol Photocatalysis
摘要: 优化了La掺杂Bi2WO6光催化剂的水热制备工艺。考察了掺杂量、反应液初始pH值、水热时间、焙烧温度及焙烧时间等条件因素对La掺杂Bi2WO6在模拟太阳光下光催化降解4-氯酚(4-CP)性能的影响。结果表明:La掺杂量为1.5 wt%,反应液初始pH值为7,160℃水热12 h,经500℃焙烧2 h,制备的La掺杂Bi2WO6的光催化性能最佳,在模拟太阳光照射下对4-CP光催化去除率达51%,明显高于Bi2WO6的光催化活性(38.4%)。
Abstract: The hydrothermal synthesis process of La-doped Bi2WO6 photocatalyst was optimized. The effects of various factors including La-doping amount, initial pH of reactant solution, hydrothermal time, calcination temperature, and calcination time on the photocatalytic activity of La-doped Bi2WO6 were investigated through the photocatalytic degradation of 4-chlorophenol (4-CP) under simulated sunlight irradiation. The results show optimal preparation conditions as follows: La-doping amount is 1.5 wt%, and the initial pH value of reactant solution is 7, and hydrothermal time at 160˚C is 12 h, and calcination temperature is 500˚C, and calcination time is 2 h. The photoactivity of as-prepared La-doped Bi2WO6 was 51%, which is much higher than that of undoped Bi2WO6 prepared under the same conditions (38.4%).
文章引用:沈俊玲, 姜洪泉. La掺杂Bi2WO6光催化剂的水热制备工艺[J]. 材料科学, 2017, 7(3): 254-259. https://doi.org/10.12677/MS.2017.73035

参考文献

[1] Xu, J.H., Wang, W.Z., Sun, S.M. and Wang, L. (2012) Enhancing Visible-Light-Induce Photocatalytic Activity by Coupling with Wide-Band-Gap Semiconductor. A Case Study on Bi2WO6/TiO2. Applied Catalysis B: Environmental, 111, 126-132.
https://doi.org/10.1016/j.apcatb.2011.09.025
[2] Fenoll, J., Martinez-Menchon, M., Navarro, G., Vela, N. and Navarro, S. (2013) Photocatalytic Degradation of Substiuted Phenylurea Herbicides in Aqueous Semi-conductor Suspensions Exposed to Solar Energy. Chemosphere, 91, 571-578.
https://doi.org/10.1016/j.chemosphere.2012.11.067
[3] 姜洪泉, 李振宇, 王雪峰, 李井申, 王巧凤. TiCl4水解法水热制备Yb-P-TiO2纳米光催化剂及共掺杂的协同机制[J]. 化工学报, 2014, 65(12): 5030-5038.
[4] Ricote, J., Pardo, L., Castro, A. and Millán, P. (2001) Study of the Process of Mechano-chemical Activation to Obtain Aurivillius Oxides with n = 1. Journal of Solid State Chemistry, 160, 54-61.
https://doi.org/10.1006/jssc.2001.9188
[5] Tian, Y.L., Chang, B.B., Lu, J.L., Fu, J., Xi, F.N. and Dong, X.Q. (2013) Hydrothermal Synthesis of Graphitic Carbon Ni-tride-Bi2WO6 Heterojunctions with Enhanced Visible Light Photocatalytic Activities. ACS Applied Materials & Interfaces, 5, 7079-7085.
https://doi.org/10.1021/am4013819
[6] Sun, S.M., Wang, W.Z. and Zhang, L. (2012) Efficient Contaminant Removal by Bi2WO6 Films with Nanoleaflike Structures through a Photoelectrocatalytic Process. The Journal of Physical Chemistry C, 116, 19413-19418.
https://doi.org/10.1021/jp306332x
[7] Zhang, L.S., Wang, H.L., Chen, Z.G., Wong, P.K. and Liu, J.S. (2011) Bi2WO6 Micro/nano-Structures: Synthesis, Modifications and Visible-Light-Driven Photocatalytic Applications. Applied Catalysis B: Environmental, 106, 1-13.
https://doi.org/10.1016/j.apcatb.2011.05.008
[8] Bhattacharya, C., Lee, H.C. and Bard, A.J. (2013) Rapid Screening by Scanning Electrochemical Microscopy (SECM) of Dopants for Bi2WO6 Improved Photocatalytic Water Oxidation with Zn Doping. The Journal of Physical Chemistry C, 117, 9633-9640.
https://doi.org/10.1021/jp308629q
[9] Ranjit, K.T., Willner, I., Bossmann, S.H. and Braun, A.M. (2001) Lan-thanide Oxide-Doped Titanium Dioxide Photocatalysts: Novel Photocatalysts for the Enhanced Degradation of p-Chlorophenoxyacetic Acid. Environmental Science & Technology, 35, 1544-1549.
https://doi.org/10.1021/es001613e
[10] Xu, X.T., Ge, Y.X., Li, B., Fan, F.L. and Wang, F. (2014) Shape Evolution of Eu-Doped Bi2WO6 and Their Photocatalytic Properties. Materials Research Bulletin, 59, 329-336.
https://doi.org/10.1016/j.materresbull.2014.07.050
[11] 王春英, 谷传涛, 朱清江, 阴梦如, 罗仙平, 余长林. 稀土La3+掺杂Bi2WO6光催化降解活性艳红X-3B的研究[J].中国环境科学, 2015, 35(7): 2007-2013.
[12] Zhang, W.H., Yu, N., Zhang, L.S., Jiang, K.W., Chen, Y.Z. and Chen, Z.G. (2016) Synthesis of Yb3+/Er3+ Co-Doped Bi2WO6 Nanosheets with Enhanced Photocatalytic Activity. Materials Letters, 163, 16-19.
https://doi.org/10.1016/j.matlet.2015.09.113
[13] Zhang, C. and Zhu, Y.F. (2005) Synthes is of Square Bi2WO6 Nanoplates as High Activity Visible Light Driven Photocatalysts. Chemistry of Materials, 17, 3537-3545.
https://doi.org/10.1021/cm0501517
[14] He, Z., Sun, C., Yang, S.G., Ding, Y.C., He, H. and Wang, Z.L. (2009) Photocatalytic Degradation of Rhodamine B by Bi2WO6 with Electron Accepting Agent under Microwave Irradiation: Mechanism and Pathway. Journal of Hazardous Materials, 162, 1477-1486.
https://doi.org/10.1016/j.jhazmat.2008.06.047
[15] 卓艺乔, 黄剑锋, 曹丽云, 吴建鹏. 钨与铋摩尔比对Bi2WO6微晶形貌及光学性能的影响[J]. 硅酸盐学报, 2012, 40(6): 913-921.
[16] 刘瑛, 王为民, 傅正义, 王皓, 王玉成, 张金咏. Bi2WO6的水热合成及其光催化性能研究[J]. 无机材料学报, 2011, 26(11): 1169-1174.
[17] Sun, Q., Jia, X.R., Wang, X.F., Yu, H.G. and Yu, J.G. (2015) Facile Synthesis of Porous Bi2WO6 Nanosheets with High Photocatalytic Performance. Dalton Transactions, 44, 14532-14539.
https://doi.org/10.1039/C5DT01859E
[18] Shang, M., Wang, W.Z., Sun, S.M., Zhou, L. and Zhang, L. (2008) Bi2WO6 Nanocrystals with High Photocatalytic Activities under Visible Light. The Journal of Physical Chemistry C, 112, 10407-10411.
https://doi.org/10.1021/jp802115w
[19] Zhang, C. and Zhu, Y.F. (2005) Synthesis of Square Bi2WO6 Nanoplates as High-Activity Visible-Light-Driven Photocatalysts. Chemistry of Materials, 17, 3537-3545.
https://doi.org/10.1021/cm0501517