Fe、Co、Ni掺杂闪锌矿ZnO磁性的第一性原理研究
First-Principles Study of Magnetic Properties of Fe-, Co- and Ni-Doped Zinc Blend ZnO
DOI: 10.12677/MS.2017.72033, PDF, HTML, XML, 下载: 1,796  浏览: 3,213  国家自然科学基金支持
作者: 袁婷婷, 李春梅, 陈志谦, 黄 宇:西南大学材料与能源学部,重庆
关键词: 第一性原理电子结构磁学性质掺杂闪锌矿ZnOFirst-Principles Electronic Structure Magnetic Properties Doped Zinc Blend ZnO
摘要: 采用密度泛函理论广义梯度近似的第一性原理计算,研究了Fe、Co、Ni掺杂闪锌矿ZnO的能带结构、态密度和磁学性质。结果表明,Fe掺杂闪锌矿ZnO、Co掺杂闪锌矿ZnO与Ni掺杂闪锌矿ZnO的自旋向上和自旋向下的能带结构及态密度均呈现出了较强的不对称性,出现了明显的自旋极化现象。三种掺杂材料均为铁磁性材料,其中Fe掺杂闪锌矿ZnO的基态的稳定性较差,但其磁性最强;Co掺杂闪锌矿ZnO稳定性较好,磁性次之;Ni掺杂闪锌矿ZnO稳定性最强,磁性最差,但仍具有很强的磁性。且三种材料的总磁矩大部分都来自于掺杂原子的磁矩和被掺杂原子诱导出来的O原子的磁矩。最后,用了间接交换作用较好地解释了三种构型的磁性来源和磁性耦合机理。计算结果表明,Fe掺杂闪锌矿ZnO、Co掺杂闪锌矿ZnO和Ni掺杂闪锌矿ZnO均是优异的稀磁半导体材料。
Abstract: Using density-functional theory with the generalized gradient approximation method, we previ-ously investigated the band structures, density of states and magnetic properties of Fe-, Co-, and Ni-doped zinc blend ZnO. The calculated results show that there is a strong asymmetry with spin polarization in both the up-spin and down-spin band structures and density of states of the three types of structure. All of the three materials are Ferro magnetic substances. In particular, Fe-doped structure is found to be the poorest in stability but the strongest in magnetism among them while Ni-doped one is the strongest in stability and the weakest in magnetism. And the total magnetic moments of the three materials are mostly due to the magnetic moments of the doped atoms and magnetic moments lured by original atoms. At the end of the paper, the magnetic source and magnetic coupling mechanism of the three structures are explained using indirect exchange function. The calculated results indicate that all of the three materials are excellent diluted magnetic semiconductor.
文章引用:袁婷婷, 李春梅, 陈志谦, 黄宇. Fe、Co、Ni掺杂闪锌矿ZnO磁性的第一性原理研究[J]. 材料科学, 2017, 7(2): 252-261. https://doi.org/10.12677/MS.2017.72033

参考文献

[1] Gregg, J.F. (2007) Spintronics: A Growing Science. Nature Material, 6, 798-799.
https://doi.org/10.1038/nmat2049
[2] Look, D.C. (2001) Recent Advances in ZnO Materials and Devices. Materials Science & Engineering B, 80, 383-387.
https://doi.org/10.1016/S0921-5107(00)00604-8
[3] Desgreniers, S. (1998) High-Density Phases of ZnO: Structural and Compressive Parameters. Physical Review B, 58, 14102-14105.
https://doi.org/10.1103/PhysRevB.58.14102
[4] Mary, J.A., Vijaya, J.J., Bououdina, M., et al. (2015) Effect of Ce and Cu Co-Doping on the Structural, Morphological, and Optical Properties of ZnO Nanocrystals and First Principle Investigation of Their Stability and Magnetic Properties. Physica E: Low-dimensional Systems and Nanostructures, 66, 209-220.
https://doi.org/10.1016/j.physe.2014.10.019
[5] Wong, K.M., Alayeabbas, S.M., Shaukat, A., et al. (2013) First-Principles Investigation of the Size-Dependent Structural Stability and Electronic Properties of O-Vacancies at the ZnO Polar and Non-Polar Surfaces. Journal of Applied Physics, 113, 7768.
[6] Chiu, H.M., Yang, T.H., Hsueh, Y.C., et al. (2015) Fabrication and Characterization of Well-Dispersed Plasmonic Pt Nanoparticles on Ga-Doped ZnO Nanopagodas Array with Enhanced Photocatalytic Activity. Applied Catalysis B Environmental, 163, 156-166.
https://doi.org/10.1016/j.apcatb.2014.07.039
[7] Ciciliati, M.A., Silva, M.F., Fernandes, D.M., et al. (2015) Fe-Doped ZnO Nanoparticles: Synthesis by a Modified Sol-Gel Method and Characterization. Materials Letters, 159, 84-86.
https://doi.org/10.1016/j.matlet.2015.06.023
[8] Dietl, T., Ohno, H., Matsukura, F., et al. (2000) Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors. Science, 287, 1019.
https://doi.org/10.1126/science.287.5455.1019
[9] Ueda, K., Tabata, H. and Kawai, T. (2001) Magnetic and Electric Properties of Transition-Metal-Doped ZnO Films. Applied Physics Letters, 79, 988-990.
https://doi.org/10.1063/1.1384478
[10] Fukumura, T., Jin, Z., Kawasaki, M., et al. (2001) Magnetic Properties of Mn-Doped ZnO. Applied Physics Letters, 78, 958-960.
https://doi.org/10.1063/1.1348323
[11] Venkatesan, M., Fitzgerald, C.B., Lunney, J.G., et al. (2004) Anisotropic Ferromagnetism in Substituted Zinc Oxide. Physical Review Letters, 93, Article ID: 177206.
https://doi.org/10.1103/PhysRevLett.93.177206
[12] Katayama, H. (2003) Spin and Charge Control Method of Ternary II-VI and III-V Magnetic Semiconductors for Spintronics: Theory vs. Experiment. Journal of Physics & Chemistry of Solids, 64, 1447-1452.
https://doi.org/10.1016/S0022-3697(03)00126-4
[13] Sato, K. and Katayama-Yoshida, H. (2002) Ab Initio Study on the Mag-netism in ZnO-, ZnS-, ZnSe- and ZnTe-Based Diluted Magnetic Semiconductors. Physica Status Solidi, 229, 673-680.
https://doi.org/10.1002/1521-3951(200201)229:2<673::AID-PSSB673>3.0.CO;2-7
[14] Kresse, G. and Furthmüller, J. (1996) Efficiency of Ab Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Computational Materials Science, 6, 15-50.
https://doi.org/10.1016/0927-0256(96)00008-0
[15] Perdew, J.P., Burke, K. and Ernzerhof, M. (1996) Generalized Gradient Approximation Made Simple. Physical Review Letters, 77, 3865-3868.
https://doi.org/10.1103/PhysRevLett.77.3865
[16] Zhang, X.Y., Chen, Z.W., Yanpeng, Q.I., et al. (2007) Ab Initio Comparative Study of Zincblende and Wurtzite ZnO. Chinese Physics Letters, 24, 1032.
https://doi.org/10.1088/0256-307X/24/4/051
[17] Haq, B.U., Ahmed, R., Shaari, A., et al. (2016) Comparative Study of Fe Doped ZnO Based Diluted and Condensed Magnetic Semiconductors in Wurtzite and Zinc-Blende Structures by First-Principles Calculations. Materials Science in Semiconductor Processing, 43, 123-128.
https://doi.org/10.1016/j.mssp.2015.12.010
[18] Zhang, J., Yao, K.L., Liu, Z.L., et al. (2010) First Principles Calculations of Co-Doped Zinc-Blende ZnO Magnetic Semiconductor. Physica B Condensed Matter, 405, 1447-1451.
https://doi.org/10.1016/j.physb.2009.11.001
[19] 钟文定. 铁磁学中册[M]. 北京: 科学出版社, 1987.
[20] 宛德福, 马兴隆. 磁性物理学[M]. 北京: 电子工业出版社, 1999.
[21] 姜寿亭. 凝聚态磁性物理[M]. 北京: 科学出版社, 2003.
[22] 郭贻诚. 铁磁学[M]. 北京: 人民教育出版社, 1965.
[23] Ashcroft, N.W. and Mermin, N.D. (1976) Solid State Physics. Holt, Rinehart and Winston, Philadelphia.