钇钡铜氧超导膜溶液法沉积过程中氟化钡中间相的热力学分析
Thermodynamics Analysis on BaF2 Intermediate Phase in Solution-Derived YBCO Superconducting Film Deposition
DOI: 10.12677/MS.2017.72030, PDF, HTML, XML, 下载: 1,815  浏览: 2,681 
作者: 卢弘愿, 冯 峰, 张向松, 汪林立:清华大学深圳研究生院先进制造学部,广东 深圳;吴 蔚:上海交通大学电气工程系,上海;瞿体明, 冯平法:清华大学机械工程系,北京;翟胜军:北京原力辰超导技术有限公司,北京
关键词: 高温超导薄膜沉积标准吉布斯自由能变化High Temperature Superconducting Thin Film Deposition Standard Gibbs Free Energy Change
摘要: 在使用化学溶液沉积技术制备钇钡铜氧高温超导薄膜的过程中,氟化钡是一种重要的热处理中间相。在本文中,通过对氟化钡向其他中间相转化的化学反应进行标准吉布斯自由能变计算,对氟化钡的热力学稳定性进行了分析,考虑的温度范围为700至1000开尔文。计算中使用了物质吉布斯自由能函数法和物质生成标准摩尔吉布斯自由能法两种方法,计算标准吉布斯自由能变。该研究验证了氟化钡在较高温度下相对于其他中间相的生成优先性,同时也发现了700开尔文下碳酸钡相生成的可能性。
Abstract: In the YBa2Cu3O7-δ (YBCO) high temperature superconducting thin film fabrication via the chemical solution deposition method, BaF2 is an important intermediate phase during heat treatment. In this paper, BaF2 thermodynamics stability was analyzed through calculating the standard Gibbs free energy change (ΔGT) of the reactions related to other intermediate phases within the temperature range of 700 - 1000 K. Two thermodynamics methods, the Gibbs free energy function method and standard formation molar Gibbs free energy method, were utilized to obtain the ΔGT values. This study confirms the formation priority of BaF2 relative to other mesophase at high temperatures while the possibility of BaCO3 formation was found at 700 K.
文章引用:卢弘愿, 冯峰, 吴蔚, 张向松, 汪林立, 瞿体明, 翟胜军, 冯平法. 钇钡铜氧超导膜溶液法沉积过程中氟化钡中间相的热力学分析[J]. 材料科学, 2017, 7(2): 232-237. https://doi.org/10.12677/MS.2017.72030

参考文献

[1] Holesinger, T.G., Civale, L., Maiorov, B., et al. (2008) Progress in Nanoengineered Microstructures for Tunable High-Current, High-Temperature Superconducting Wires. Advanced Materials, 20, 391-407.
https://doi.org/10.1002/adma.200700919
[2] Hu, R., Dong, H., Li, J., et al. (2008) Study on Microstructure Characterization of YBCO Bulk Prepared by Directional Seeded Infiltration-Growth. Rare Metal Materials & Engi-neering, 37, 854-858.
https://doi.org/10.1016/S1875-5372(09)60022-9
[3] Jin, L.H., Lu, Y.F., Feng. J.Q., et al. (2013) Development of Modified TFA-MOD Approach for GdBa2Cu3Oy Film Growth. Materials Letters, 94, 23-26.
https://doi.org/10.1016/j.matlet.2012.12.022
[4] Zhao, X., Gao, C., Xia, Y., et al. (2011) Preparation of YBCO Coated Con-Ductors on RABiTS Substrate with Advanced TFA-MOD Method. Rare Metal Materials & Engineering, 40, 342-345.
[5] Huang, R., Feng, F., Wu, W., et al. (2013) A Water-Free Metal Organic Depo-Sition Method for Yba2Cu3O7−δ Thin Film Fabrication. Superconductor Science & Technology, 26, 115010-115016.
https://doi.org/10.1088/0953-2048/26/11/115010
[6] Wu, W., Feng, F., Zhao, Y., et al. (2014) A Low-Fluorine Solution with a 2:1 F/Ba Mole Ratio for the Fabrication of YBCO Films. Superconductor Science & Technology, 27, 105-112.
https://doi.org/10.1088/0953-2048/27/5/055006
[7] Li, M., Yang, W., Shu, G., et al. (2015) Con-trolled-Growth of Yba2Cu3O7−δ Film Using Modified Low-Fluorine Chemical Solution Deposition. IEEE Transactions on Applied Superconductivity, 25, 1-4.
[8] Goyal, A. (2005) Second-Generation HTS Conductors. Kluwer Academic Publishers, Boston, 179-194.
https://doi.org/10.1007/b106635
[9] 叶大伦. 实用无机物热力学数据手册[M]. 第2版. 北京: 冶金工业出版社, 2002: 1-1209.
[10] Klotz, I.M. and Rosenberg, R.M. (2008) Chemical Thermodynamic: Basic Concepts and Methods. 7th Edition, Wiley, Hoboken, 1-110.
https://doi.org/10.1002/9780470285237.ch1
[11] Barin, I. (1995) Thermochemical Data of Pure Substances. 3rd Edition, WILEY-VCH Verlag GmbH, Weinheim 1-1885.
https://doi.org/10.1002/9783527619825
[12] Jin, L.H., Li, C.S., Feng, J.Q., et al. (2016) Optimization of Fluorine Content in TFA-MOD Precursor Solutions for YBCO Film Growth. Superconductor Science & Technology, 29, Article ID: 015001.
https://doi.org/10.1088/0953-2048/29/1/015001