农田土壤重金属污染现状及修复技术应用研究进展
Review on Contamination and Remediation Technology of Heavy Metal in Agricultural Soil
DOI: 10.12677/AEP.2017.71004, PDF, HTML, XML,  被引量 下载: 3,056  浏览: 6,024  国家科技经费支持
作者: 宣斌*, 王济, 段志斌, 王堃, 安吉平:贵州师范大学地理与环境科学学院,贵州 贵阳
关键词: 农田重金属污染修复技术Agricultural Soil Heavy Metal Pollution Remediation Technology
摘要: 农田土壤重金属污染不仅直接影响农作物质量,而且会通过食物链进入人体产生富集,威胁人体健康,研究农田土壤重金属污染现状及修复技术对农产品安全具有重要意义。本文综述了国内外广泛使用的农田重金属污染修复技术及其优缺点,提出联合修复技术必须朝着绿色和环境友好的方向发展。针对当前中国人多地少的现状,开发经济实用的联合修复技术(如微生物-油料作物联合修复技术)是当下需要迫切解决的问题。最后在已有研究的基础上,提出联合修复技术应朝着工程应用化的方向发展,深入探索联合修复的相互作用机理,以期为农田重金属污染的综合治理与修复技术提供科学参考。
Abstract: Heavy metal pollution of agricultural soil not only directly affects the quality of crops, but also their accumulation throughout the food chain leads to serious health problem. The status of heavy metal pollution remediation technology is of great significance to the safety of agricultural products. This paper reviews the research progress and advantages and disadvantages of heavy metal remediation technologies widely used at home and abroad. Joint remediation technology must be developed in the direction of the green and environmental friendly. In view of the current Chinese land development situation, economic and practical remediation (such as microbial remediation of oil crops) is an urgent problem that should be solved. As the above concluded, joint repair technology should be applied in the direction of engineering application, and deeply explored the interaction mechanism, in order to provide scientific reference for the comprehensive treatment and remediation technology of heavy metal pollution in agricultural soil.
文章引用:宣斌, 王济, 段志斌, 王堃, 安吉平. 农田土壤重金属污染现状及修复技术应用研究进展[J]. 环境保护前沿, 2017, 7(1): 26-34. https://doi.org/10.12677/AEP.2017.71004

参考文献

[1] 宋想斌, 李贵祥, 方向京, 等. 重金属胁迫下施肥影响作物富集重金属的研究进展[J]. 作物杂志, 2015(2): 12-17.
[2] Wu, G., Kang, H.B., Zhang, X.Y., Shao, H.B. and Chu, L. (2010) A Critical Review on the Bio-removal of Hazardous Heavy Metals from Contaminated Soils: Issues, Progress Eco-Environmental Concerns and Opportunities. Journal of Hazardous Materials, 174, 1-8. https://doi.org/10.1016/j.jhazmat.2009.09.113
[3] Wei, B.G. and Yang, L.S. (2010) A Review of Heavy Metal Contaminations in Urban Soils, Urban Road Dusts and Agricultural Soils from China. Microchemical Journal, 94, 99-107. https://doi.org/10.1016/j.microc.2009.09.014
[4] 徐子成, 陈思浩, 涂闽. 我国耕地重金属污染治理与防范刻不容缓[J]. 上海化工, 2013, 38(12): 1-2.
[5] Xia, X.H., Chen, X., Liu, R.M., and Liu, H. (2011) Heavy Metals in Urban Soils with Various Types of Land Use in Beijing, China. Journal of Hazardous Materials, 186, 2043-2050. https://doi.org/10.1016/j.jhazmat.2010.12.104
[6] 赵一先. 环境影响评价中选取上海地区土壤重金属含量背景值的合理范围[J]. 科技创新与应用, 2016(7): 158-159.
[7] 陈 涛, 常庆瑞, 刘京, 等. 长期污灌农田土壤重金属污染及潜在环境风险评价[J]. 农业环境科学学报, 2012, 31(11): 2152-2159.
[8] 吴学丽, 杨永亮, 徐清, 等. 沈阳地区河流灌渠沿岸农田表层土壤中重金属的污染现状评价[J]. 农业环境科学学报, 2011, 30(2): 282-288.
[9] 高清, 顾优丽, 龚梦丹, 等. 杭州市和睦湿地农田土壤重金属污染评价及关联特征研究[J]. 湿地科学与管理, 2014, 10(2): 48-52.
[10] Li, J., Lu, Y., Yin, W., Gan, H. and Zhang, C. (2009) Distribution of Heavy Metals in Agricultural Soils Near a Petrochemical Complex in Guangzhou, China. Environmental Monitoring and Assessment, 153, 365-375. https://doi.org/10.1007/s10661-008-0363-x
[11] Huang, S.S., Liao, Q.L., Hua, M., Wu, X.M. and Bi, K.S. (2007) Survey of Heavy Metal Pollution and Assessment of Agricultural Soils in Yangzhong District, Jiangsu Province, China. Chemosphere, 67, 2148-2155. https://doi.org/10.1016/j.chemosphere.2006.12.043
[12] 王济. 贵阳市表层土壤中的重金属[M]. 贵阳: 贵州人民出版社, 2006: 170-173.
[13] 国家环境保护局. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990.
[14] 吴琼, 赵同科, 邹国元, 等. 北京东南郊农田土壤重金属含量与环境质量评价[J]. 中国土壤与肥料, 2016(1): 7-12.
[15] 李春颖. 沈阳市区域农田土壤重金属污染状况研究[J]. 环境保护与循环经济, 2010, 30(9): 56-58.
[16] 孙建光, 高俊莲, 徐晶, 徐明岗, 姜瑞波. 微生物分子生态学方法预警农田重金属污染的研究进展[J]. 植物营养与肥料学报, 2007, 13(9): 15-16.
[17] 杨海琳. 土壤重金属污染修复的研究[J]. 环境科学与管理, 2009, 34(6): 130-135.
[18] Navarro, A., Caadas, I., Martinez, D., Rodriguez, J. and Mendoza, J.L. (2009) Application of Solar Thermal Desorption to Remediation of Mercury-Contaminated Soils. Solar Energy, 83, 1405-1414. https://doi.org/10.1016/j.solener.2009.03.013
[19] 杨勤, 王兴润, 孟昭福, 张洁. 热脱附处理技术对汞污染土壤的影响[J]. 西北农业学报, 2013, 22(6): 203-208.
[20] Comuzzi, C., Lesa, B., Aneggi, E., Dolcetti, G. and Goi, D. (2011) Salt-Assisted Thermal Desorption of Mercury from Contaminated Dredging Sludge. Journal of Hazardous Materials, 193, 177-182. https://doi.org/10.1016/j.jhazmat.2011.07.047
[21] 赵涛, 王兴润, 杨晓进, 颜湘华. 氯盐对汞化合物污染土壤热脱附过程的影响[J]. 环境科学研究, 2015, 28(3): 425-430.
[22] 马建伟, 王慧, 罗启仕. 电动力学-新型竹炭联合作用下土壤镉的迁移吸附及其机理[J]. 环境科学, 2007, 28(8): 1829-1834.
[23] Almeira, O.J., Peng, C.S. and Abou-Shady, A. (2012) Simultaneous Removal of Cadmium from Kaolin and Catholyte during Soil Electrokinetic Remediation. Desalination, 300, 1-11. https://doi.org/10.1016/j.desal.2012.05.023
[24] Zhou, D.M., Long, C., Alshawabkeh, A.N., Wang, Y.J. and Hao, X.Z. (2006) Pi-Lot-Scale Electrokinetic Treatment of a Cu Contaminated Red Soil. Chemosphere, 63, 964-971. https://doi.org/10.1016/j.chemosphere.2005.08.059
[25] Karim, M.A. and Khan, L.L. (2001) Removal of Heavy Metals from Sandy Soil Using CEHIXM Process. Journal of Hazardous Materials, 81, 83-102. https://doi.org/10.1016/S0304-3894(00)00310-1
[26] 秦樊鑫, 魏朝富, 李红梅. 重金属污染土壤修复技术综述与展望[J]. 环境科学与技术, 2015, 38(12Q): 199-208.
[27] Cao, X.D., Ma, L.Q., Singh, S.P. and Zhou, Q. (2008) Phosphate-Induced Lead Immobilization from Different Lead Minerals in Soils Under Varying pH Conditions. Environment Pollution, 152, 184-192. https://doi.org/10.1016/j.envpol.2007.05.008
[28] Chen, B., Zhou, D. and Zhu, L. (2008) Transitional Adsorption and Partition of Nonpolar and Polar Aromatic Contaminants by Biochars of Pine Needles with Different Pyrolytic Temperatures. Environment Science and Technology, 42, 5137-5143. https://doi.org/10.1021/es8002684
[29] Jiang, J., Xu, R.K., Jiang, T.Y. and Li, Z. (2012) Immobilization of Cu(II), Pb(II) and Cd (II) by the Addition of Rice Straw Derived Biochar to a Simulated Polluted Ultisol. Journal of Hazardous Materials, 229-230, 145-150. https://doi.org/10.1016/j.jhazmat.2012.05.086
[30] Uchimiya, M., Lima, I.M., Klasson, K.T. and Wartelle, L.H. (2010) Contaminant Immobilization and Nutrient Release by Biochar Soil Amendment: Roles of Natural Organic Matter. Chemosphere, 80, 935-940. https://doi.org/10.1016/j.chemosphere.2010.05.020
[31] 卫泽斌, 郭晓方, 吴启堂. 化学淋洗深层土壤固定联合技术修复重金属污染土[J]. 农业环境科学学报, 2010, 29(2): 407-408.
[32] Navarro, A. and Martinez, F. (2010) The Use of Soil Flushing to Remediate Metal Contamination in a Smelting Slag Dumping Area: Column and Pilot Scale Experiments. Engineering Geology, 115, 16-27. https://doi.org/10.1016/j.enggeo.2010.07.001
[33] 莫良玉, 范稚莲, 陈海凤. 不同铵盐去除农田土壤重金属研究[J]. 西南农业学报, 2013, 26(6): 2407-2411.
[34] Yang, R.X., Luo, C.L., Zhang, G., Li, X. and Shen, Z. (2012) Extraction of Heavy Metals from E-Waste Contaminated Soils Using EDDS. Journal of Environmental Sciences, 24, 1985-1994. https://doi.org/10.1016/S1001-0742(11)61036-X
[35] Yi, L.S., Wang W.Y., Tao, Y., Liu, Y. and Wen, J. (2013) Removing Heavy Metals in Contaminated Soils by the Organic Acids. Journal of Agro-Environment Science, 32, 701-707.
[36] 王怡君, 张世熔, 肖罗怡, 等. 3种纳米材料对低分子质量有机酸淋洗铅, 锌和镉效率的影响[J]. 环境工程学报, 2016, 10(10): 6001-6008.
[37] Babu, A.G., Shim, J., Bang, K.S., Shea, P.J. and Byungtaek, O. (2014) Trichoderma Virens PDR-28: A Heavy Metal-Tolerant and Plant Growth-Promoting Fungus for Remediation and Bioenergy Crop Production on Mine Tailing Soil. Journal of Environmental Management, 132, 129-134. https://doi.org/10.1016/j.jenvman.2013.10.009
[38] Marques, A.P.G.C., Rangel, A.O.S.S. and Castr, O.P.M.L. (2009) Remediation of Heavy Metal Contaminated Soils: Phytoremediation as a Potentially Promising Clean-Up Technology. Critical Reviews in Environmental Science and Technology, 39, 622-654. https://doi.org/10.1080/10643380701798272
[39] Fulekar, M.H., Singh, A. and Bhaduri, A.M. (2009) Genetic Engineering Strategies for Enhancing Phytoremediation of Heavy Metals. African Journal of Biotechnology, 8, 529-535.
[40] Verburggen, N., Hermans, C. and Schat, H. (2009) Molecular Mechanisms of Metal Hyperaccumulation in Plants. New Phytologist, 181, 759-776. https://doi.org/10.1111/j.1469-8137.2008.02748.x
[41] 胡国涛, 于阳, 杨兴, 等. 速生树种竹柳对镉的吸收, 积累与分布特性[J]. 环境科学学报, 2016, 36(4): 1508-1514.
[42] Marchio, L., Assolari, S., Sacco, P. and Zerbi, G. (2004) Phytoextraction of Heavy Metals by Canola (Brassica napus) and Radish (Raphanus sativus) Grown on Multicontaminated Soil. Environmental Pollution, 132, 21-27. https://doi.org/10.1016/j.envpol.2004.04.001
[43] Vijayarahavan, K. and Yun, Y.S. (2008) Bacterial Biosorbents and Biosorption. Biotechnology Advances, 26, 266-291. https://doi.org/10.1016/j.biotechadv.2008.02.002
[44] Zemberyova, M., Okenicova, L., Bartekova, J., Simonovicova, A. and Gaplovska, K. (2014) Bioaccumulation of Heavy Metals from Aqueous Solutions by Live Biomass of Aspergillus Niger Wild Type Strains Isolated from Different Environments. Fresenius Environmental Bulletin, 23, 597-602.
[45] Luo, S.L., Li, X.J., Chen, L., Chen, J. and Wan, Y. (2014) Layer-by-Layer Strategy for Adsorption Capacity Fattening of Endophytic Bacterial Biomass for Highly Effective Removal of Heavy Metals. Chemical Engineering Journal, 239, 312-321. https://doi.org/10.1016/j.cej.2013.11.029
[46] Choppala, G., Bolan, N., Kunhikrishnan, A., Skinner, W. and Seshadri, B. (2015) Concomitant Reduction and Immobilization of Chromium in Relation to Its Bioavailability in Soils. Environmental Science and Pollution Research, 22, 8969-8978. https://doi.org/10.1007/s11356-013-1653-6
[47] 刘军, 刘春生, 纪洋, 刘玉升, 阴启蓬. 土壤动物修复技术作用的机理及展望[J]. 山东农业大学学报: 自然科学版, 2009, 40(2): 313-316.
[48] 唐浩, 朱江, 黄沈发, 邱江平. 蚯蚓在土壤重金属污染及其修复中的应用研究进展[J]. 土壤, 2013, 45(1): 17-25.
[49] Amm, A.R. and Bouche, M.B. (1997) Heavy Metal Linkages with Mineral, Organic and Living Soil Compartment. Soil Biology & Biochemistry, 27, 649-655.
[50] Hendriks, A.J. and Ma, W.C. (1999) Modelling and Monitoring Organochlorine and Heavy Metal Accumulation in Soils, Earthworms and Shrews in Rhinedelta Floodplains. Archives of Environmental Contamination and Toxicology, 37, 70-77.
[51] 寇永纲, 伏小勇, 侯培强, 等. 蚯蚓对重金属污染土壤中铅的富集研究[J]. 环境科学与管理, 2008, 33(1): 62-64.
[52] 田伟莉, 柳丹, 吴家森, 王立江, 陈昆柏. 动植物联合修复技术在重金属复合污染土壤修复中的应用[J]. 水土保持学报, 2013, 27(05): 188-192.
[53] 黄细花, 卫泽斌, 郭晓方, 史学峰, 吴启堂. 套种和化学淋洗联合技术修复重金属污染土壤[J]. 环境科学, 2010, 31(12): 3067-3074.
[54] 雷平. 微生物-油料作物联合修复重金属污染耕地技术探讨[J]. 湖南农业科学, 2016(9): 121-123.
[55] Sheng, X.F. and Xia, J.J. (2006) Improvement of Rape (Brassica napus) Plant Growth and Cadmium Uptake by Cadmium-Resistant Bacteria. Chemosphere, 64, 1036-1042. https://doi.org/10.1016/j.chemosphere.2006.01.051
[56] Wang, B., Liu, L., Gao, Y. and Chen, J. (2009) Improved Phytoremediation of Oilseed Rape (Brassica Napus) by Trichodermamutant Constructed by Restriction Enzyme-Mediated Integration (REMI) in Cadmium Polluted Soil. Chemosphere, 74, 1400-1403. https://doi.org/10.1016/j.chemosphere.2008.11.027