(1-x)(K0.5Na0.5)NbO3-xBa0.985La0.01TiO3无铅陶瓷的微观结构及电性能研究
Microstructure and Electrical Properties of (1-x)(K0.5Na0.5)NbO3-xBa0.985La0.01TiO3 Lead-Free Ceramics
DOI: 10.12677/MS.2017.71006, PDF, HTML, XML, 下载: 1,814  浏览: 3,174  科研立项经费支持
作者: 程花蕾, 肖 健, 高 鹏, 严云云, 高拴平:宝鸡文理学院化学与化工学院陕西省植物重点实验室,陕西 宝鸡
关键词: 无铅陶瓷铌酸钾钠电性能Lead-Free Ceramic Potassium Sodium Niobate Electrical Properties
摘要: 采用传统固相烧结法制备(1−x)(K0.5Na0.5)NbO3-xBa0.985La0.01TiO3 (KNN-xBLT, x = 0.01、0.02、0.04、0.05)无铅陶瓷并研究了BLT掺杂对KNN陶瓷性能的影响。结果表明:BLT的掺杂抑制了KNN-xBLT陶瓷晶粒的生长使陶瓷晶粒尺寸更均匀。在室温至350℃范围内,KNN-xBLT陶瓷的介电常数随着BLT掺杂量的增加而增大且居里温度向低温方向移动。0.95KNN-0.05BLT陶瓷是一种弛豫铁电体且在室温至350℃范围内最大介电常数4000,介电损耗小于0.02,暗示其在高温陶瓷电容器介质材料方面的应用潜力。在研究的组成范围内,KNN-xBLT陶瓷的相结构随BLT掺杂量的增加由正交相转变为四方相,当x = 0.04时,KNN-xBLT陶瓷为正交和四方两相共存。0.96KNN-0.04BLT陶瓷因正交相和四方相共存压电性能有所提高(d33 = 185 pC/N, kp = 0.39),但距铅基压电陶瓷的性能还有差距。
Abstract: The (1−x)(K0.5Na0.5)NbO3-xBa0.985La0.01TiO3 (KNN-xBLT, x = 0.01, 0.02, 0.04, 0.05) lead-free ceramics were prepared by the conventional solid-state sintering method. It was found that the phase structure of KNN-xBLT ceramics changed from the orthorhombic phase to the tetragonal phase with the increase of BLT content. When x = 0.04, the phase structure of KNN-xBLT ceramics was orthorhombic and tetragonal phase coexisting. The density increased and the grain size decreased with BLT increased. The dielectric constant of the KNN-xBLT ceramics increased with the increase of BLT content and the Curie temperature shifted to the low temperature in the temperature range from room temperature to 350˚C. The 0.95KNN-0.05BLT ceramic was a relaxor ferroelectric with high dielectric constant of ɛ > 4000 and the low dielectric loss of tanδ < 0.02 in the temperature range from room temperature to 350˚C. These results indicate that 0.95KNN-0.05BLT ceramics are promising candidate materials for preparing the high temperature multilayer ceramics capacitors. The 0.96KNN-0.04BLT ceramics obtain the optimum piezoelectric properties: d33 = 185 pC/N, kp = 0.39.
文章引用:程花蕾, 肖健, 高鹏, 严云云, 高拴平. (1-x)(K0.5Na0.5)NbO3-xBa0.985La0.01TiO3无铅陶瓷的微观结构及电性能研究[J]. 材料科学, 2017, 7(1): 39-47. http://dx.doi.org/10.12677/MS.2017.71006

参考文献

[1] Suchanicz, J. (1995) Investigations of the Phase Transitions in Na0.5Bi0.5TiO3. Ferroelectrics, 172, 455-458. https://doi.org/10.1080/00150199508018512
[2] Nagata, H. and Takenaka, T. (2001) Additive Effects on Electrical Properties of (Bi1/2Na1/2)TiO3 Ferroelectric Ceramics. Journal of the European Ceramic Society, 21, 1299-1302. https://doi.org/10.1016/S0955-2219(01)00005-X
[3] Qu, Y.F., Shan, D., Song, J.J., et al. (2005) Effect of A-Site Substitution on Crystal Component and Dielectric Properties in Bi0.5Na0.5TiO3 Ceramics. Materials Science and Engi-neering: B, 121, 148-151. https://doi.org/10.1016/j.mseb.2005.03.023
[4] Zhang, H.W., Deng, H., Chen, C., et al. (2014) Chemical Nature of Giant Strain in Mn-Doped 0.94(Na0.5Bi0.5) TiO3-0.06BaTiO3 Lead-Free Ferroelectric Single Crystals. Scripta Materialia, 75, 50-53. https://doi.org/10.1016/j.scriptamat.2013.11.017
[5] Guo, Y.C., Fan, H.Q., Long, C.B., et al. (2014) Electromechanical and Electrical Properties of Bi0.5Na0.5Ti1-xMnxO3-δ Ceramics with High Remnant Polarization. Journal of Alloys and Compounds, 610, 189-195. https://doi.org/10.1016/j.jallcom.2014.04.038
[6] Lee, Y.C., Lee, T.K., Jan, J.H., et al. (2011) Piezoelectric Properties and Microstructures of ZnO-Doped Bi0.5Na0.5TiO3 Ceramics. Journal of the European Ceramic Society, 31, 3145-3152. https://doi.org/10.1016/j.jeurceramsoc.2011.05.010
[7] Liu, X.M., Guo, H.Z., Tan, X.L., et al. (2014) Evolution of Structure and Electrical Properties with Lanthanum Content in[(Bi1/2Na1/2)0.95Ba0.05]1−xLaxTiO3 Ceramics. Journal of the European Ceramic Society, 34, 2997-3006. https://doi.org/10.1016/j.jeurceramsoc.2014.03.017
[8] Lu, W.Z., Wang, Y., Fan, G.F., et al. (2011) The Structural and Electric Properties of Li- and K-Substituted Bi0.5Na0.5TiO3 Ferroelectric Ceramics. Journal of Alloys and Compounds, 509, 2738-2744. https://doi.org/10.1016/j.jallcom.2010.10.041
[9] Wu, J.G., Xiao, D.Q. and Zhu, J.G. (2015) Potassium-Sodium Ni-obate Lead-Free Piezoelectric Materials: Past, Present, and Future of Phase Boundaries. Chemical Reviews, 115, 2559-2595. https://doi.org/10.1021/cr5006809
[10] Zhang, B.Y., Wu, J.G., Cheng, X.J., et al. (2013) Lead-Free Pie-zoelectrics Based on Potassium-Sodium Niobate with Giant d33. ACS Applied Materials & Interfaces, 5, 7718-7725. https://doi.org/10.1021/am402548x
[11] Wang, X.P., Wu, J.G., Xiao, D.Q., et al. (2014) Giant Piezoelectricity in Po-tassium-Sodium Niobate Lead-Free Ceramics. Journal of the American Chemical Society, 136, 2905-2910. https://doi.org/10.1021/ja500076h
[12] Wu, J.G. and Wang, Y.M. (2014) Two-Step Sintering of New Potassium So-dium Niobate Ceramics: A High D33 and Wide Sintering Temperature Range. Dalton Transactions, 43, 12836-12841. https://doi.org/10.1039/C4DT01712A
[13] Zheng, T., Wu, J.G., Cheng, X.J., et al. (2014) New Potassium-Sodium Niobate Material System: A Giant-D33 and High-TC Lead-Free Piezoelectric. Dalton Transactions, 43, 11759-11766. https://doi.org/10.1039/C4DT01293C
[14] Cha, M.S., Koh, J.H. and Lee, S.K. (2014) Influence of the Sintering Temperature and Ag2O Dopants on Microstructure and Piezoelectric Properties of 0.94(Na0.5K0.5)NbO3−0.06LiNbO3 Lead-Free Ceramics. Journal of Alloys and Compounds, 587, 729-732. https://doi.org/10.1016/j.jallcom.2013.11.021
[15] Li, F.X, Xiao, D.Q., Wu, J.G., Wang, Z., Liu, C. and Zhu, J. (2014) Phase Structure and Electrical Properties of (Na0.5K0.5)NbO3−(Bi0.5Na0.5)ZrO3 Lead-Free Ceramics with a Sintering aid of ZnO. Ceramics International, 40, 14601- 14605. https://doi.org/10.1016/j.ceramint.2014.06.045
[16] Wang, H., Zhai, X., Xu, J.W., Yuan, C. and Zhou, C. (2013) Effects of CuO Doping on the Structure and Properties Lead-Free KNN-LS Piezoelectric Ceramics. Journal of Materials Science: Materials in Electronics, 24, 2469-2472. https://doi.org/10.1007/s10854-013-1119-0
[17] Kanga, I.Y., Seoa, I.T., Cha, Y.J., et al. (2012) Low Temperature Sintering of ZnO and MnO2-Added (Na0.5K0.5)NbO3 Ceramics. Journal of the European Ceramic Society, 32, 2381-2387. https://doi.org/10.1016/j.jeurceramsoc.2012.01.030
[18] Azough, F., Wegrzyn, M., Freer, R., Sharma, S. and Hall, D. (2011) Microstructure and Piezoelectric Properties of CuO Added (K, Na, Li)NbO3 Lead-Free Piezoelectric Ceramics. Journal of the European Ceramic Society, 31, 569- 576. https://doi.org/10.1016/j.jeurceramsoc.2010.10.033
[19] Jaeger, R.E. and Egerton, L. (1962) Hot Pressing of Potassium Sodium Niobates. Journal of the American Ceramic Society, 45, 209-213. https://doi.org/10.1111/j.1151-2916.1962.tb11127.x
[20] Zhang, B.P., Zhang, L.M., Li, J.F., Zhang, H.L. and Jin, S.Z. (2005) SPS Sintering of NaNbO3-KNbO3 Piezoelectric Ceramics. Material Science Forum, 475-479, 1165-1168. https://doi.org/10.4028/www.scientific.net/MSF.475-479.1165
[21] Lopez, R., Gonzalez, F., Cruz, M.P. and Villa-fuerte-Castrejon, M.E. (2011) Piezoelectric and Ferroelectric Properties of K0.5Na0.5NbO3 Ceramics Synthesized by Spray Drying Method. Materials Research Bulletin, 46, 70-74. https://doi.org/10.1016/j.materresbull.2010.09.034
[22] Ha, J.Y. and Choi, J.W. (2014) Improved Piezoelectric Prop-erties of Lead-Free (1−x)(Na0.5K0.5)NbO3-x(Ba0.95 Sr0.05)TiO3 Ceramics by Particle Size Control. Ceramics International, 40, 12023-12028. https://doi.org/10.1016/j.ceramint.2014.04.041
[23] Zheng, T., Wu, J.G., Xiao, D.Q. and Zhu, J. (2015) Giant D33 in Nonstoichiometric (K,Na)NbO3-Based Lead-Free Ceramics. Scripta Materialia, 94, 25-27. https://doi.org/10.1016/j.scriptamat.2014.09.008
[24] Cheng, H.L., Du, H.L. and Zhou, W.C. (2013) Bi(Zn2/3Nb1/3)O3-(K0.5Na0.5)NbO3 High-Temperature Lead-Free Ferroelectric Ceramics with Low Capacitance Variation in a Broad Temperature Usage Range. Journal of the American Ceramic Society, 96, 833-837. https://doi.org/10.1111/jace.12118
[25] Jiang, L.M., Xing, J., Tan, Z., et al. (2016) High Piezoelectricity in (K,Na)(Nb,Sb)O3-(Bi,La,Na,Li)ZrO3 Lead-Free Ceramics. Journal of Materials Science, 51, 4963-4972. https://doi.org/10.1007/s10853-016-9801-2
[26] Lu, Y.T., Chen, X.M., Jin, D.Z. and Hu, X. (2005) Dielectric and Ferroelectric Properties of (1−x)(Na0.5K0.5)NbO3− xBaTiO3 Ceramics. Materials Research Bulletin, 40, 1847-1855. https://doi.org/10.1016/j.materresbull.2005.04.044
[27] Lu, D.Y., Yue, Y. and Sun, X.Y., (2014) Novel X7R BaTiO3 Ceramics Co-Doped with La3+ and Ca2+ Ions. Journal of Alloys and Compounds, 586, 136-141. https://doi.org/10.1016/j.jallcom.2013.10.055
[28] Du, H.L., Zhou, W.C., Luo, F., et al. (2008) Sintering Characteristic, Microstructure, and Dielectric Relaxor Behavior of (K0.5Na0.5)NbO3-(Bi0.5Na0.5)TiO3 Lead-Free Ceramics. Journal of the American Ceramic Society, 91, 2903-2909. https://doi.org/10.1111/j.1551-2916.2008.02528.x