块体非晶合金的成分设计研究进展
Research Progress of the Composition Design of Bulk Metallic Glasses
DOI: 10.12677/MS.2016.64034, PDF, HTML, XML, 下载: 1,951  浏览: 5,113  科研立项经费支持
作者: 孙亚娟, 翟延慧:天津工业大学理学院,天津
关键词: 块体非晶合金成分设计玻璃形成能力Bulk Metallic Glass Composition Design Glass Forming Ability
摘要: 高玻璃形成能力的非晶成分设计是非晶合金领域的研究难点,目前还没有一个可定量化、普适性的方法来确定潜在的块体非晶合金新成分。本文综述了多种准则用于预测具有高非晶形成能力的合金成分。
Abstract: Amorphous component design of the glass forming ability of bulk metallic glasses (BMGs) is the key problem in the field of the amorphous alloy. There is no method that can be quantified and is universal to determine the potential new composition of bulk metallic glasses. In this paper, we reviewed a variety of criteria used to predict the alloy composition which has the high amorphous formation ability.
文章引用:孙亚娟, 翟延慧. 块体非晶合金的成分设计研究进展[J]. 材料科学, 2016, 6(4): 263-267. http://dx.doi.org/10.12677/MS.2016.64034

参考文献

[1] [1] Inoue, A. (2000) Stabilization of Metallic Supercooled Liquid and Bulk Amorphous Alloys. Acta Materialia, 48, 279- 306.
http://dx.doi.org/10.1016/S1359-6454(99)00300-6
[2] Busch, R., Masuhr, A. and Johnson, W. (2001) Thermodynamics and Kinetics of Zr-Ti-Cu-Ni-Be Bulk Metallic Glass Forming Liquids. Materials Science and Engi-neering: A, 304, 97-102.
http://dx.doi.org/10.1016/S0921-5093(00)01458-1
[3] Greer, A.L. (1994) Materials Science-Nanostructure by Nucleation. Nature, 368, 688-689
[4] Takeuchi, A. (2001) Inoue, Quantitative Evaluation of Critical Cooling Rate for Metallic Glasses. Materials Science and Engineering: A, 304-306, 446-451.
http://dx.doi.org/10.1016/S0921-5093(00)01446-5
[5] Liu, C.T. and Lu, Z.P. (2005) Effect of Minor Alloying Additions on Glass Formation in Bulk Metallic Glasses. Intermetallics, 13, 415-418.
http://dx.doi.org/10.1016/j.intermet.2004.07.034
[6] Wang, W.H., Lewandowski, J.J. and Greer, A.L. (2005) Understanding the Glass-Forming Ability of Cu50Zr50 Alloys in Terms of a Metastable Eutectic. Journal of Materials Research, 9, 1-6.
[7] Xu, H.D., Lohwongwatana, B., Duan G., Johnson W.L. and Carland C. (2004) Bulk Metallic Glass Formation in Binary Cu-rich Alloy Series Cu100-xZrx (x=34,36,38, 40 at%) and Mechanical Properties of Bulk Cu64Zr36 Glass. Acta Materialia, 52, 2621-2629.
http://dx.doi.org/10.1016/j.actamat.2004.02.009
[8] Shindo, T., Waseda, Y. and Inoue, A. (2002) Prediction of Glass-Forming Composition Ranges in Zr-Ni-Al Alloys. Mater. Trans. JIM, 43, 2502-2508.
http://dx.doi.org/10.2320/matertrans.43.2502
[9] Boer, F.R. and Perrifor, D.G. (1988) Co-hesion in Metals. Elsevier, Amsterdam, 1-295.
[10] Bakker, H. (1998) Enthalpies in Alloys. Tech Publications, Zurich, 1-78.
http://dx.doi.org/10.4028/www.scientific.net/MSFo.1
[11] Desre, P.J. (1999) Thermodynamics and Glass Forming Ability from The liquid State. Materials Research Society Symposium Proceedings, 554, 51-62.
[12] Egami, T. (1997) Universal Criterion for Metallic Glass Formation. Materials Science and Engineering A, 226-228, 261-267.
http://dx.doi.org/10.1016/S0921-5093(97)80041-X
[13] Egami, T. (2003) Atomistic Mechanism of Bulk Metallic Glass Formation. Journal of Non-Crystalline Solids, 317, 30- 33.
http://dx.doi.org/10.1016/S0022-3093(02)02003-3
[14] Senkov, O.N. and Miracle, D.B. (2001) Effect of the Atomic Size Distribution on Glass Forming Ability of Amorphous Metallic Alloys. Materials Research Bulletin, 36, 2183-2198.
http://dx.doi.org/10.1016/S0025-5408(01)00715-2
[15] Miracle, D.B. (2003) On the Universal Model for Medium-Range Order in Amorphous Metal Structures. Journal of Non-Crystalline Solids, 317, 40-44.
http://dx.doi.org/10.1016/S0022-3093(02)01981-6
[16] Miracle, D.B. and Senkov, O.N. (2003) Topological Cri-terion for Metallic Glass Formation. Materials Science and Engineering A, 347, 50-58.
http://dx.doi.org/10.1016/S0921-5093(02)00579-8
[17] Senkov, O.N. and Scott, J.M. (2004) Specific Criteria for Selection of Alloy Composition for Bulk Metallic Glasses. Scripta Materialia, 50, 449-452.
http://dx.doi.org/10.1016/j.scriptamat.2003.11.004
[18] 董闯, 王英敏, 恙建兵. 大块非晶合金成分设计方法[P]. 中国专利, No.01128027 12001, 2001-08-10.
[19] Löffler, J.F. (2003) Bulk Metallic Glasses. Intermetallics, 11, 529-540.
http://dx.doi.org/10.1016/S0966-9795(03)00046-3
[20] Ma, D., Tan, H., Wang, D., Li, Y. and Ma, E. (2005) Strategy for Pinpointing the Best Glass-Forming Alloys. Applied Physics Letters, 86, 191906.
http://dx.doi.org/10.1063/1.1922570
[21] Shen, J., Zou, J., Ye, L., et al. (2005) Glass-Forming Ability and Ther-mal Stability of a New Bulk Metallic Glass in the Quaternary Zr-Cu-Ni-Al System. Journal of Non-Crystalline Solids, 351, 2519-2523.
http://dx.doi.org/10.1016/j.jnoncrysol.2005.07.009
[22] Poon, S.J., Shiflet, G.J., Guo, F.Q. and Ponnambalam, V. (2003) Glass Formability of Ferrous- and Aluminum-Based Structural Metallic Alloys. Journal of Non-Crystalline Solids, 317, 1-9.
http://dx.doi.org/10.1016/S0022-3093(02)02000-8
[23] Wang, D., Li, Y., Sun, B.B., Sui, M.L., Lu, K. and Ma, E. (2004) Bulk Metallic Glass Formation in the Binary Cu-Zr System. Applied Physics Letters, 84, 4029-4031.
http://dx.doi.org/10.1063/1.1751219
[24] Cao, H., Ma, D., Hsieh, K.-C., Ding, L., Stratton, W.G., Voyles, P.M., Pan, Y., Cai, M., Dickinson, J.T. and Chang, Y.A. (2006) Computational Thermodynamics to Identify Zr-Ti-Ni-Cu-Al Alloys with High Glass-Forming Ability. Acta Materialia, 54, 2975-2982.
http://dx.doi.org/10.1016/j.actamat.2006.02.051
[25] Wang, W.H., Dong, C. and Shek, C.H. (2004) Bulk Metallic Glasses. Materials Science and Engineering R: Reports, 44, 45-98.
http://dx.doi.org/10.1016/j.mser.2004.03.001
[26] Shen, J., Chen, Q.J., Sun, J.F., Fan, H.B. and Wang, G. (2005) Exceptionally High Glass-Forming Ability of an FeCoCrMoCBY Alloy. Applied Physics Letters, 86, 151907.
http://dx.doi.org/10.1063/1.1897426
[27] Yan, M., Zou, J. and Shen, J. (2006) Effect of Over-Doped Yttrium on the Microstructure, Mechanical Properties and Thermal Properties of a Zr-Based Metallic Glass. Acta Materialia, 54, 3627-3635.
http://dx.doi.org/10.1016/j.actamat.2006.03.052
[28] Xu, D.H., Duan, G. and Johnson, W.L. (2004) Unusual Glass-Forming Ability of Bulk Amorphous Alloys Based on Ordinary Metal Copper. Physical Review Letters, 92, 245504.
http://dx.doi.org/10.1103/PhysRevLett.92.245504