MS  >> Vol. 6 No. 4 (July 2016)

    高密度垂直磁存储FePt颗粒薄膜媒质的研究
    Study on FePt Granular Film for Perpendicular Magnetic Recording (PMR) Media with Ultra-High Density

  • 全文下载: PDF(908KB) HTML   XML   PP.251-255   DOI: 10.12677/MS.2016.64032  
  • 下载量: 1,139  浏览量: 1,965   科研立项经费支持

作者:  

韩锦婉,章 黎,蒋俊程,郑晨露,胡海琴:台州学院物理与电子工程学院,浙江 台州

关键词:
FePt颗粒薄膜磁控溅射法垂直磁存储FePt Granular Film Magnetron Sputtering Method Perpendicular Magnetic Recording

摘要:

本文采用磁控溅射法在硅基片上生长FePt颗粒薄膜。FePt膜层下面为MgO籽层,以此引发薄膜的L10相fct织构。在FePt薄膜中掺入C可减小其颗粒尺寸。采用X射线衍射仪(XRD)、超导量子干涉仪(SQUID)和透射电镜(TEM)对FePt颗粒进行表征,结果表明制备的样品具有优良的L10相结构,其磁滞曲线表明方形度很好,而且垂直矫顽力能有26 kOe,颗粒大小为8.3 nm。高分辨透射电镜表征表明其优良的fct超晶格结构。该磁性薄膜有望应用于下一代高密度磁存储媒质。

Magnetron sputtering was applied to grow FePt granular film on a silicon substrate. A MgO inter-layer was in-between the film and substrate to induce the L10 structure in the FePt alloy film with fct texture. The carbon addition helps reduce the grain size of the film. XRD, SQUID and TEM were applied to measure its structure, magnetic properties, and microstructures, respectively. Results show that the film has excellent L10 order, and the squareness of MH loop is close to unity, with a high perpendicular coercivity of 26 kOe. The microstructure shows that it has small grain size of 8.3 nm with uniform distribution. High-resolution TEM image shows extremely excellent super- lattice structure in the L10 phase. This film is expected to be a promising candidate for ultra-high density magnetic recording in the future.

文章引用:
韩锦婉, 章黎, 蒋俊程, 郑晨露, 胡海琴. 高密度垂直磁存储FePt颗粒薄膜媒质的研究[J]. 材料科学, 2016, 6(4): 251-255. http://dx.doi.org/10.12677/MS.2016.64032

参考文献

[1] Ruigrok, J., Coehoorn, R., Cumpson, S., et al. (2000) Disk Recording beyond 100 Gb/in.2: Hybrid Recording? (Invited). Journal of Applied Physics, 87, 5398-5403.
http://dx.doi.org/10.1063/1.373356
[2] Varaprasad, B., Takahashi, Y.K., Wang, J.., et al. (2014) Mechanism of Coercivity Enhancement by Ag Addition in FePt-C Granular Films for Heat Assisted Magnetic Recording Media. Applied Physics Letters, 104, 222403.
http://dx.doi.org/10.1063/1.4880655
[3] Hirayama, Y., Tamai, I., Takekuma, I., et al. (2009) Role of Underlayer for Segregated Structure Formation of CoCrPt- SiO2 Granular Thin Film. Journal of Physics: Conference Series, 165, 012033.
http://dx.doi.org/10.1088/1742-6596/165/1/012033
[4] 冯春, 李宝河, 滕蛟, 等. Ag和Ti底层对[Fe/Pt]n多层膜有序化的影响. 物理学报, 2005, 54(10): 4898-4902.
[5] 汪元亮, 顾正飞, 成钢, 等. Fe-Pt纳米晶永磁合金薄膜研究现状. 电工材料, 2006(3): 29-33.
[6] Xu, Z., Liu, X.D., Gao, R.X., et al. (2008) Photoinduced Magnetic Softening of Perpendicularly Magnetized L10-FePt Granular Films. Applied Physics Letters, 93, 162509.
http://dx.doi.org/10.1063/1.3007977
[7] 刘梅, 陈芳慧, 王永红等. C底层厚度对FePt(001)织构生长的影响. 兵器材料科学与工程, 2011, 34(4): 9-12.
[8] Chen, J.S., Lim, B.C., Ding, Y.F., et al. (2009) Granular L10 FePt-X(X=C, TiO2, Ta2O5) (001) Nanocomposite Films Small Grain Size for High Density Magnetic Recording. Journal of Applied Physics, 105, 07B702.
[9] Perumal, A., Ko, H.S. and Shin, S.C. (2003) Perpendicular Thin Films of Carbon-Doped FePt for Ultrahigh-Density Magnetic Recording Media. IEEE Transactions on Magnetics, 39, 2320-2324.
http://dx.doi.org/10.1109/TMAG.2003.816284