钙离子通道和钙信号震荡模型研究
Modeling of Ca2+ Channels and Ca2+ Signal Oscillations
DOI: 10.12677/BIPHY.2016.41001, PDF, HTML, XML, 下载: 3,116  浏览: 8,691  国家自然科学基金支持
作者: 陈 圆, 李 翔, 帅建伟*:厦门大学物理科学与技术学院物理系,福建 厦门;祁 宏:山西大学复杂系统研究所,山西 太原
关键词: 钙离子通道钙信号建模分析Calcium Ion Channel Calcium Signaling Modeling Analysis
摘要: 钙离子是细胞内广泛存在的第二信使,控制着几乎所有的生命过程。本文以钙信号的生物背景为基础,首先介绍了构建钙离子信号网络模型的数学方法,包括生化反应建模、参数拟合等;接着我们介绍了关于1,4,5-三磷酸肌醇受体(IP3R)通道和线粒体钙单向转运体(MCU)通道的各种模型;然后我们讨论了关于钙离子信号震荡的各种点源模型,包括内质网释放的钙信号震荡模型和内质网-线粒体相互作用调控的钙信号震荡模型;最后我们建议未来对钙信号相关的细胞信号网络建模展开进一步的研究。
Abstract: The calcium ions (Ca2+) are the second messengers which are ubiquitous in cells, regulating almost all the cellular processes. In this review, based on the biological background of Ca2+ signaling, we first introduce the mathematical methods for the construction of Ca2+ signaling models, including modeling of biochemical reactions and parameter fitting. Next, we discuss in detail the modeling of Ca2+ channels, including the 1, 4, 5-trisphosphate receptor channel (IP3R) and mitochondrial Ca2+ signaling uniporter (MCU). Then we discuss various point source models of Ca2+ signal oscillations controlled by endoplasmic reticulum (ER) or the cross talk between ER and Mitochondria. Possible trends of modeling of Ca2+ signal in cellular signaling networks are also suggested.
文章引用:陈圆, 祁宏, 李翔, 帅建伟. 钙离子通道和钙信号震荡模型研究[J]. 生物物理学, 2016, 4(1): 1-26. http://dx.doi.org/10.12677/BIPHY.2016.41001

参考文献

[1] Bootman, M.D. and Berridge, M.J. (1995) The Elemental Principles of Calcium Signaling. Cell, 83, 675-678.
http://dx.doi.org/10.1016/0092-8674(95)90179-5
[2] Berridge, M.J. (1997) Elementary and Global Aspects of Calcium Signalling. The Journal of Physiology, 499, 291-306.
http://dx.doi.org/10.1113/jphysiol.1997.sp021927
[3] Berridge, M.J., Bootman, M.D. and Lipp, P. (1998) Calcium—A Life and Death Signal. Nature, 395, 645-648.
http://dx.doi.org/10.1038/27094
[4] Berridge, M.J., Bootman, M.D. and Roderick, H.L. (2003) Calcium Signalling: Dynamics, Homeostasis and Remodelling. Nature Reviews Molecular Cell Biology, 4, 517-529.
http://dx.doi.org/10.1038/nrm1155
[5] Berridge, M.J., Lipp, P. and Bootman, M.D. (2000) The Versatility and Universality of Calcium Signalling. Nature Reviews Molecular Cell Biology, 1, 11-21.
http://dx.doi.org/10.1038/35036035
[6] Porter, K.R., Claude, A. and Fullam, E.F. (1945) A Study of Tissue Culture Cells by Electron Microscopy: Methods and Preliminary Observations. The Journal of Experimental Medicine, 81, 233-246.
http://dx.doi.org/10.1084/jem.81.3.233
[7] Tang, S., Wong, H.-C., Wang, Z.-M., et al. (2011) Design and Application of a Class of Sensors to Monitor Ca2+ Dynamics in High Ca2+ Concentration Cellular Compartments. Proceedings of the National Academy of Sciences of the United States of America, 108, 16265-16270.
http://dx.doi.org/10.1073/pnas.1103015108
[8] Meldolesi, J. and Pozzan, T. (1998) The Endoplasmic Reticulum Ca2+ Store: A View from the Lumen. Trends in Biochemical Sciences, 23, 10-14.
http://dx.doi.org/10.1016/S0968-0004(97)01143-2
[9] Rizzuto, R., Duchen, M.R. and Pozzan, T. (2004) Flirting in Little Space: The ER/Mitochondria Ca2+ Liaison. Science Signaling, 2004, re1.
http://dx.doi.org/10.1126/stke.2152004re1
[10] Perocchi, F., Gohil, V.M., Girgis, H.S., et al. (2010) MICU1 Encodes a Mitochondrial EF Hand Protein Required for Ca2+ Uptake. Nature, 467, 291-296.
http://dx.doi.org/10.1038/nature09358
[11] Boncompagni, S., Rossi, A.E., Micaroni, M., et al. (2009) Mitochondria Are Linked to Calcium Stores in Striated Muscle By developmentally Regulated Tethering Structures. Molecular Biology of the Cell, 20, 1058-1067.
http://dx.doi.org/10.1091/mbc.E08-07-0783
[12] Szabadkai, G. and Duchen, M.R. (2008) Mitochondria: The Hub of Cellular Ca2+ Signaling. Physiology, 23, 84-94.
http://dx.doi.org/10.1152/physiol.00046.2007
[13] Berridge, M.J. (1990) Calcium Oscillations. The Journal of Biological Chemistry, 265, 9583-9586.
[14] Bootman, M.D., Collins, T.J., Peppiatt, C.M., et al. (2001) Calcium Signalling—An Overview. Seminars in Cell & Developmental Biology, 12, 3-10.
[15] Pozzan, T., Rizzuto, R., Volpe, P. and Meldolesi, J. (1994) Molecular and Cellular Physiology of Intracellular Calcium Stores. Physiological Reviews, 74, 595-636.
[16] Blaustein, M.P. and Lederer, W.J. (1999) Sodium/Calcium Exchange: Its Physiological Implications. Physiological Reviews, 79, 763-854.
[17] Bosanac, I., Alattia, J.-R., Mal, T.K., et al. (2002) Structure of the Inositol 1,4,5-Trisphosphate Receptor Binding Core in Complex with Its Ligand. Nature, 420, 696-700.
http://dx.doi.org/10.1038/nature01268
[18] Sato, C., Hamada, K., Ogura, T., et al. (2004) Inositol 1,4,5-Trisphosphate Receptor Contains Multiple Cavities and L- Shaped Ligand-Binding Domains. Journal of Molecular Biology, 336, 155-164.
http://dx.doi.org/10.1016/j.jmb.2003.11.024
[19] Mikoshiba, K. (1993) Inositol 1,4,5-Trisphosphate Receptor. Trends in Pharmacological Sciences, 14, 86-89.
http://dx.doi.org/10.1016/0165-6147(93)90069-V
[20] Bezprozvanny, L., Watras, J. and Ehrlich, B.E. (1991) Bell-Shaped Calcium-Response Curves of lns(l,4,5)P3- and Calcium-Gated Channels from Endoplasmic Reticulum of Cerebellum. Nature, 351, 751-754.
http://dx.doi.org/10.1038/351751a0
[21] Finch, E.A., Turner, T.J. and Goldin, S.M. (1991) Calcium as a Coa-gonist of Inositol 1,4,5-Trisphosphate-Induced Calcium Release. Science, 252, 443-446.
http://dx.doi.org/10.1126/science.2017683
[22] Roderick, H.L., Berridge, M.J. and Bootman, M.D. (2003) Calcium-Induced Calcium Release. Current Biology, 13, R425.
http://dx.doi.org/10.1016/s0960-9822(03)00358-0
[23] Stathopulos, P.B., Seo, M.-D., Enomoto, M., Amador, F.J., Ishiyama, N. and Ikura, M. (2012) Themes and Variations in ER/SR Calcium Release Channels: Structure and Function. Physiology, 27, 331-342.
http://dx.doi.org/10.1152/physiol.00013.2012
[24] 范娟, 杨瑾, 周鑫, 等. Ryanodine受体的功能结构和调节因子[J]. 中国细胞生物学学报, 2015, 37(1): 6-15.
[25] Carafoli, E., Santella, L., Branca, D. and Brini, M. (2001) Generation, Control, and Processing of Cellular Calcium Signals. Critical Reviews in Biochemistry and Molecular Biology, 36, 107-260.
http://dx.doi.org/10.1080/20014091074183
[26] Carafoli, E. (2003) The Calcium-Signalling Saga: Tap Water and Protein Crystals. Nature Reviews Molecular Cell Biology, 4, 326-332.
http://dx.doi.org/10.1038/nrm1073
[27] Lipp, P. and Niggli, E. (1996) A Hierarchical Concept of Cellular and Subcellular Ca2+-Signalling. Progress in Biophysics and Molecular Biology, 65, 265-296.
http://dx.doi.org/10.1016/S0079-6107(96)00014-4
[28] Yao, Y., Choi, J. and Parker, I. (1995) Quantal Puffs of Intracellular Ca2+ Evoked by Inositol Trisphosphate in Xenopus oocytes. The Journal of Physiology, 482, 533-553.
http://dx.doi.org/10.1113/jphysiol.1995.sp020538
[29] Bootman, M.D. and Berridge, M.J. (1996) Subcellular Ca2+ Signals Underlying Waves and Graded Responses in HeLa Cells. Current Biology, 6, 855-865.
http://dx.doi.org/10.1016/S0960-9822(02)00609-7
[30] Bootman, M., Niggli, E., Berridge, M. and Lipp, P. (1997) Imaging the Hierarchical Ca2+ Signalling System in HeLa Cells. The Journal of Physiology, 499, 307-314.
http://dx.doi.org/10.1113/jphysiol.1997.sp021928
[31] Thomas, D., Lipp, P., Tovey, S.C., et al. (2000) Microscopic Properties of Elementary Ca2+ Release Sites in Non-Ex- citable Cells. Current Biology, 10, 8-15.
http://dx.doi.org/10.1016/S0960-9822(99)00258-4
[32] Ideker, T., Galitski, T. and Hood, L. (2001) A New Approach to Decoding Life: Systems Biology. Annual Review of Genomics and Human Genetics, 2, 343-372.
http://dx.doi.org/10.1146/annurev.genom.2.1.343
[33] De Pittà, M., Volman, V., Berry, H. and Ben-Jacob, E. (2011) A Tale of Two Stories: Astrocyte Regulation of Synaptic Depression and Facilitation. PLoS Computational Biology, 7, e1002293.
http://dx.doi.org/10.1371/journal.pcbi.1002293
[34] Höfer, T., Venance, L. and Giaume, C. (2002) Control and Plasticity of Intercellular Calcium Waves in Astrocytes: A Modeling Approach. The Journal of Neuroscience, 22, 4850-4859.
[35] Bennett, M.R., Buljan, V., Farnell, L. and Gibson, W.G. (2006) Purinergic Junctional Transmission and Propagation of Calcium Waves in Spinal Cord Astrocyte Networks. Biophysical Journal, 91, 3560-3571.
http://dx.doi.org/10.1529/biophysj.106.082073
[36] De Pitta, M., Volman, V., Levine, H. and Ben-Jacob, E. (2009) Multimodal Encoding in a Simplified Model of Intracellular Calcium Signaling. Cognitive Processing, 10, 55-70.
http://dx.doi.org/10.1007/s10339-008-0242-y
[37] Li, B., Chen, S.B., Zeng, S.Q., Luo, Q.M. and Li, P.C. (2012) Modeling the Contributions of Ca2+ Flows to Spontaneous Ca2+ Oscillations and Cortical Spreading Depres-sion-Triggered Ca2+ Waves in Astrocyte Networks. PLoS ONE, 7, e48534.
http://dx.doi.org/10.1371/journal.pone.0048534
[38] Ausiello, G., Karhumäki, J., Mauri, G. and Ong, L., Eds. (2008) Fifth IFIP International Conference on Theoretical Computer Science—TCS 2008: IFIP 20th World Computer Congress, TC 1, Foundations of Computer Science, September 7-10, 2008, Milano, Italy. Springer, Beilin.
[39] Waage, P. and Gulberg, C.M. (1986) Studies Concerning Affinity. Journal of Chemical Education, 63, 1044.
http://dx.doi.org/10.1021/ed063p1044
[40] Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. and Teller, E. (1953) Equation of State Calculations by Fast Computing Machines. The Journal of Chemical Physics, 21, 1087-1092.
http://dx.doi.org/10.1063/1.1699114
[41] Kirkpatrick, S., Gelatt Jr., C.D. and Vecchi, M.P. (1983) Optimization by Simulated Annealing. Science, 220, 671-680.
http://dx.doi.org/10.1126/science.220.4598.671
[42] Holland, J.H. (1975) Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. University of Michigan Press, Ann Arbor.
[43] 葛红. 免疫算法与遗传算法比较[J]. 暨南大学学报: 自然科学与医学版, 2003, 24(1): 22-25.
[44] Jerne, N.K. (1974) Towards a Network Theory of the Immune System. Annales d’Immunologie, 125C, 373-389.
[45] 王磊, 潘进, 焦李成. 免疫算法[J]. 电子学报, 2000, 28(7): 74-78.
[46] De Young, G.W. and Keizer, J. (1992) A Single-Pool Inositol 1,4,5-Trisphosphate-Receptor-Based Model for Agonist-Stimulated Oscillations in Ca2+ Concentration. Proceedings of the National Academy of Sciences of the United States of America, 89, 9895-9899.
http://dx.doi.org/10.1073/pnas.89.20.9895
[47] Li, Y.-X. and Rinzel, J. (1994) Equations for InsP3 Receptor-Mediated [Ca2+]i Oscillations Derived from a Detailed Kinetic Model: A Hodgkin-Huxley Like Formalism. Journal of Theoretical Biology, 166, 461-473.
http://dx.doi.org/10.1006/jtbi.1994.1041
[48] Qi, H., Li, L. and Shuai, J. (2015) Optimal Microdomain Crosstalk between Endoplasmic Reticulum and Mitochondria for Ca2+ Oscillations. Scientific Reports, 5, Article No. 7984.
http://dx.doi.org/10.1038/srep07984
[49] Shuai, J., Yang, D., Pearson, J. and Rüdiger, S. (2009) An Investigation of Models of the IP3R Channel in Xenopus oocyte. Chaos, 19, 037105-037101.
http://dx.doi.org/10.1063/1.3156402
[50] Shuai, J., Pearson, J.E., Foskett, J.K., Mak, D.-O.D. and Parker, I. (2007) A Kinetic Model of Single and Clustered IP3 Receptors in the Absence of Ca2+ Feedback. Biophysical Journal, 93, 1151-1162.
http://dx.doi.org/10.1529/biophysj.107.108795
[51] Swillens, S., Dupont, G., Combettes, L. and Champeil, P. (1999) From Calcium Blips to Calcium Puffs: Theoretical Analysis of the Requirements for Interchannel Communication. Proceedings of the National Academy of Sciences of the United States of America, 96, 13750-13755.
http://dx.doi.org/10.1073/pnas.96.24.13750
[52] Sneyd, J. and Dufour, J.-F. (2002) A Dynamic Model of the Type-2 Inositol Trisphosphate Receptor. Proceedings of the National Academy of Sciences of the United States of America, 99, 2398-2403.
http://dx.doi.org/10.1073/pnas.032281999
[53] Siekmann, I., Wagner, L.E., Yule, D., Crampin, E.J. and Sneyd, J. (2012) A Kinetic Model for Type I and II IP3 R Accounting for Mode Changes. Biophysical Journal, 103, 658-668.
http://dx.doi.org/10.1016/j.bpj.2012.07.016
[54] Gunter, T.E. and Sheu, S.-S. (2009) Characteristics and Possible Functions of Mitochondrial Ca2+ Transport Mechanisms. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1787, 1291-1308.
http://dx.doi.org/10.1016/j.bbabio.2008.12.011
[55] Csordás, G., Golenár, T., Seifert, E.L., et al. (2013) MICU1 Controls Both the Threshold and Cooperative Activation of the Mitochondrial Ca2+ Uniporter. Cell Metabolism, 17, 976-987.
http://dx.doi.org/10.1016/j.cmet.2013.04.020
[56] Rüdiger, S., Shuai, J. and Sokolov, I. (2010) Law of Mass Action, Detailed Balance, and the Modeling of Calcium Puffs. Physical Review Letters, 105, Article ID: 048103.
http://dx.doi.org/10.1103/PhysRevLett.105.048103
[57] Qi, H., Huang, Y.D., Rüdiger, S. and Shuai, J.W. (2014) Frequency and Relative Prevalence of Calcium Blips and Puffs in a Model of Small IP3R Clusters. Biophysical Journal, 106, 2353-2363.
http://dx.doi.org/10.1016/j.bpj.2014.04.027
[58] Cao, P., Donovan, G., Falcke, M. and Sneyd, J. (2013) A Stochastic Model of Calcium Puffs Based on Single-Channel Data. Biophysical Journal, 105, 1133-1142.
http://dx.doi.org/10.1016/j.bpj.2013.07.034
[59] Sneyd, J., Tsaneva-Atanasova, K., Reznikov, V., Bai, Y., Sanderson, M.J. and Yule, D.I. (2006) A Method for Determining the Dependence of Calcium Oscillations on Inositol Trisphosphate Oscillations. Proceedings of the National Academy of Sciences of the United States of America, 103, 1675-1680.
http://dx.doi.org/10.1073/pnas.0506135103
[60] Wei, F. and Shuai, J.W. (2011) Intercellular Calcium Waves in Glial Cells with Bistable Dynamics. Physical Biology, 8, Article ID: 026009.
http://dx.doi.org/10.1088/1478-3975/8/2/026009
[61] Fall, C.P. and Keizer, J.E. (2001) Mitochondrial Modulation of Intracellular Ca2+ Signaling. Journal of Theoretical Biology, 210, 151-165.
http://dx.doi.org/10.1006/jtbi.2000.2292
[62] Marhl, M., Haberichter, T., Brumen, M. and Heinrich, R. (2000) Complex Calcium Oscillations and the Role of Mitochondria and Cytosolic Proteins. Biosystems, 57, 75-86.
http://dx.doi.org/10.1016/S0303-2647(00)00090-3
[63] Szopa, P., Dyzma, M. and Kaźmierczak, B. (2013) Membrane Associated Complexes in Calcium Dynamics Modelling. Physical Biology, 10, Article ID: 035004.
http://dx.doi.org/10.1088/1478-3975/10/3/035004
[64] Bading, H., Ginty, D.D. and Greenberg, M.E. (1993) Regulation of Gene Expression in Hippocampal Neurons by Distinct Calcium Signaling Pathways. Science, 260, 181-186.
http://dx.doi.org/10.1126/science.8097060
[65] Hardingham, G.E., Chawla, S., Johnson, C.M. and Bading, H. (1997) Distinct Functions of Nuclear and Cytoplasmic Calcium in the Control of Gene Expression. Nature, 385, 260-265.
http://dx.doi.org/10.1038/385260a0
[66] West, A.E., Chen, W.G., Dalva, M.B., et al. (2001) Calcium Regulation of Neuronal Gene Expression. Proceedings of the National Academy of Sciences of the United States of America, 98, 11024-11031.
http://dx.doi.org/10.1073/pnas.191352298
[67] Dolmetsch, R.E., Xu, K. and Lewis, R.S. (1998) Calcium Oscillations Increase the Efficiency and Specificity of Gene Expression. Nature, 392, 933-936.
http://dx.doi.org/10.1038/31960
[68] Nicotera, P. and Orrenius, S. (1998) The Role of Calcium in Apoptosis. Cell Calcium, 23, 173-180.
http://dx.doi.org/10.1016/S0143-4160(98)90116-6
[69] Orrenius, S., Zhivotovsky, B. and Nicotera, P. (2003) Regulation of Cell Death: The Calcium-Apoptosis Link. Nature reviews Molecular Cell Biology, 4, 552-565.
http://dx.doi.org/10.1038/nrm1150
[70] Boehning, D., Patterson, R.L., Sedaghat, L., Glebova, N.O., Kurosaki, T. and Snyder, S.H. (2003) Cytochrome c Binds to Inositol (1,4,5) Trisphosphate Receptors, Amplifying Cal-cium-Dependent Apoptosis. Nature Cell Biology, 5, 1051- 1061.
http://dx.doi.org/10.1038/ncb1063
[71] Pinton, P., Giorgi, C., Siviero, R., Zecchini, E. and Rizzuto, R. (2008) Calcium and Apoptosis: ER-Mitochondria Ca2+ Transfer in the Control of Apoptosis. Oncogene, 27, 6407-6418.
http://dx.doi.org/10.1038/onc.2008.308
[72] Strasser, A., O’Connor, L. and Dixit, V.M. (2000) Apoptosis Signaling. Annual Review of Biochemistry, 69, 217-245.
http://dx.doi.org/10.1146/annurev.biochem.69.1.217
[73] Nakagawa, T., Zhu, H., Morishima, N., et al. (2000) Caspase-12 Mediates Endoplasmic-Reticulum-Specific Apoptosis and Cytotoxicity by Amyloid-β. Nature, 403, 98-103.
http://dx.doi.org/10.1038/47513
[74] Nakamura, K., Bossy-Wetzel, E., Burns, K., et al. (2000) Changes in Endoplasmic Reticulum Luminal Environment Affect Cell Sensitivity to Apoptosis. The Journal of Cell Biology, 150, 731-740.
http://dx.doi.org/10.1083/jcb.150.4.731
[75] Scorrano, L., Oakes, S.A., Opferman, J.T., et al. (2003) BAX and BAK Regulation of Endoplasmic Reticulum Ca2+: A Control Point for Apoptosis. Science, 300, 135-139.
http://dx.doi.org/10.1126/science.1081208
[76] Yang, J., Liu, X., Bhalla, K., et al. (1997) Prevention of Apoptosis by Bcl-2: Release of Cytochrome c from Mitochondria Blocked. Science, 275, 1129-1132.
http://dx.doi.org/10.1126/science.275.5303.1129
[77] Desagher, S. and Martinou, J.-C. (2000) Mitochondria as the Central Control Point of Apoptosis. Trends in Cell Biology, 10, 369-377.
http://dx.doi.org/10.1016/S0962-8924(00)01803-1
[78] Wang, X. (2001) The Expanding Role of Mitochondria in Apoptosis. Genes & Development, 15, 2922-2933.
[79] Sun, X.-M., MacFarlane, M., Zhuang, J., Wolf, B.B., Green, D.R. and Cohen, G.M. (1999) Distinct Caspase Cascades Are Initiated in Receptor-Mediated and Chemical-Induced Apoptosis. Journal of Biological Chemistry, 274, 5053- 5060.
http://dx.doi.org/10.1074/jbc.274.8.5053
[80] Ashkenazi, A. and Dixit, V.M. (1998) Death Receptors: Signaling and Modulation. Science, 281, 1305-1308.
http://dx.doi.org/10.1126/science.281.5381.1305
[81] Schulze-Osthoff, K., Ferrari, D., Los, M., Wesselborg, S. and Peter, M.E. (1998) Apoptosis Signaling by Death Receptors. The FEBS Journal, 254, 439-459.
http://dx.doi.org/10.1046/j.1432-1327.1998.2540439.x
[82] Ilg, E.C., Schäfer, B.W. and Heizmann, C.W. (1996) Expression Pattern of S100 Calcium-Binding Proteins in Human Tumors. International Journal of Cancer, 68, 325-332.
http://dx.doi.org/10.1002/(SICI)1097-0215(19961104)68:3<325::AID-IJC10>3.0.CO;2-7
[83] Hermani, A., Hess, J., De Servi, B., et al. (2005) Calcium-Binding Proteins S100A8 and S100A9 as Novel Diagnostic Markers in Human Prostate Cancer. Clinical Cancer Research, 11, 5146-5152.
http://dx.doi.org/10.1158/1078-0432.CCR-05-0352
[84] Heizmann, C.W. and Braun, K. (1992) Changes in Ca2+-Binding Proteins in Human Neurodegenerative Disorders. Trends in Neurosciences, 15, 259-264.
http://dx.doi.org/10.1016/0166-2236(92)90067-I
[85] Celsi, F., Pizzo, P., Brini, M., et al. (2009) Mitochondria, Calcium and Cell Death: A Deadly Triad in Neurodegeneration. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1787, 335-344.
http://dx.doi.org/10.1016/j.bbabio.2009.02.021
[86] Bezprozvanny, I. and Mattson, M.P. (2008) Neuronal Calcium Mishandling and the Pathogenesis of Alzheimer’s Disease. Trends in Neurosciences, 31, 454-463.
http://dx.doi.org/10.1016/j.tins.2008.06.005
[87] Arispe, N., Rojas, E. and Pollard, H.B. (1993) Alzheimer Disease Amyloid Beta Protein Forms Calcium Channels in Bilayer Membranes: Blockade by Tromethamine and Aluminum. Proceedings of the National Academy of Sciences of the United States of America, 90, 567-571.
http://dx.doi.org/10.1073/pnas.90.2.567
[88] Chan, C.S., Gertler, T.S. and Surmeier, D.J. (2009) Calcium Homeostasis, Selective Vulnerability and Parkinson’s Disease. Trends in Neurosciences, 32, 249-256.
http://dx.doi.org/10.1016/j.tins.2009.01.006
[89] Exner, N., Lutz, A.K., Haass, C. and Winklhofer, W.F. (2012) Mitochondrial Dysfunction in Parkinson’s Disease: Molecular Mechanisms and Pathophysiological Consequences. The EMBO Journal, 31, 3038-3062.
http://dx.doi.org/10.1038/emboj.2012.170
[90] Bers, D.M. and Guo, T. (2005) Calcium Signaling in Cardiac Ventricular Myocytes. Annals of the New York Academy of Sciences, 1047, 86-98.
http://dx.doi.org/10.1196/annals.1341.008
[91] Norton, L., Parr, T., Chokkalingam, K., et al. (2008) Calpain-10 Gene and Protein Expression in Human Skeletal Muscle: Effect of Acute Lipid-Induced Insulin Resistance and Type 2 Diabetes. The Journal of Clinical Endocrinology & Metabolism, 93, 992-998.
http://dx.doi.org/10.1210/jc.2007-1981
[92] Smith, I.J., Lecker, S.H. and Hasselgren, P.-O. (2008) Calpain Activity and Muscle Wasting in Sepsis. American Journal of Physiology-Endocrinology and Metabolism, 295, E762-E771.
http://dx.doi.org/10.1152/ajpendo.90226.2008