肿瘤预后相关免疫抑制分子概述
The Overview of Tumor-Related Immunosuppressive Molecules
DOI: 10.12677/ACM.2015.52014, PDF, HTML, XML, 下载: 3,272  浏览: 11,140 
作者: 张冬云, 刘安丽, 李 寅, 王 静:南阳医学高等专科学校,基础医学部,河南 南阳;刘 冉:南阳医学高等专科学校,第一附属医院肿瘤科,河南 南阳
关键词: 肿瘤免疫免疫抑制分子综述Tumor Immune Immunosuppressive Molecules Overview
摘要: 肿瘤机体内免疫抑制细胞、免疫抑制分子状态与肿瘤发生、发展密切相关。本文综述了肿瘤免疫过程中参与肿瘤免疫逃逸的免疫抑制分子PD-1,CTLA-4,TIM-3,LAG-3,CD160,BTLA的功能状况及最新研究进展。
Abstract: Tumorigenesis was closely related to the states of immune tumor suppressor cells and immuno-suppressive molecules. In the paper, we overviewed current functional situation and newly re-search progress of immunosuppressive molecules, e.g. programmed death-1, cytotoxic T lympho-cyte-associated antigen-4, T cell immunoglobulin domain and mucin domain-3, B and T lymphocyte attenuator, LAG-3, CD160, which took part in the tumor immune escape in the process of tumor immunity.
文章引用:张冬云, 刘冉, 刘安丽, 李寅, 王静. 肿瘤预后相关免疫抑制分子概述[J]. 临床医学进展, 2015, 5(2): 78-83. http://dx.doi.org/10.12677/ACM.2015.52014

参考文献

[1] Dunn, G.P., Bruce, A.T., et al. (2002) Cancer immunoediting: From immunosurveillance to tumor escape. Nature Im-munology, 3, 991-998.
[2] Pombo, C., Wherry, E.J., Gostick, E., et al. (2015) Elevated expression of CD160 and 2B4 defines a cytolytic HIV- specific CD8 T cell population in elite controllers. Journal of Infectious Diseases.
[3] Ghebeh, H., Barhoush, E., Tulbah, A., et al. (2008) FOXP3+ Tregs and B7-H1+/PD-1+ T lymphocytes co-infiltrate the tumor tissues of high-risk breast cancer patients: Implication for immunotherapy. BMC Cancer, 23, 5-7.
[4] Mao, Y., Li, W., Chen, K., et al. (2015) B7-H1 and B7-H3 are independent predictors of poor prognosis in patients with non-small cell lung cancer. Oncotarget, 6, 3452-3461.
[5] Karim, R., Jordanova, E.S., Piersma, S.J., et al. (2009) Tumor-expressed B7-H1 and B7-DC in relation to PD-1+ T-cell infiltration and survival of patients with cervical carcinoma. Clinical Cancer Research, 15, 6341-6347.
[6] Kaiser, A.D., Schuster, K., Gadiot, J., et al. (2012) Reduced tumor-antigen density leads to PD-1/PD-L1-mediated impairment of partially exhausted CD8+ T cells. European Journal of Immunology, 42, 662-671.
[7] Wu, D., Zhang, Z., Pan, H., et al. (2015) Upregulation of the B7/CD28 family member B7-H3 in bladder cancer. Oncology Letters, 9, 1420-1424.
[8] Hurwitz, A.A., Foster, B.A., Kwon, E.D., et al. (2000) Combination immunotherapy of primary prostate cancer in a transgenic mouse model using CELA-4 blockade. Cancer Research, 60, 2444-2448.
[9] Lute, K.D., May Jr., K.F., Lu, P., et al. (2005) Human CTLA-4 konck-in mice unravel the quantitative link between tumor immunity and autoimmunity induced by anti-CTLA-4 antibodies. Blood, 106, 3127-3133.
[10] Kremer, J.M., Westhovens, R., Leon, M., et al. (2003) Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA-4 Ig. New England Journal of Medicine, 349, 1907-1915.
[11] Wang, X.B., Kakoulidou, M., Giscombe, R., et al. (2005) Abnormal expression of CTLA-4 by T cells and can trigger apoptosis upon ligand interaction. International Journal of Cancer, 117, 538-550.
[12] McIntire, J.J., Umetsu, S.E., Akbari, O., Potter, M., Kuchroo, V.K., Barsh, G.S., et al. (2001) Identification of Tapr (An airway hyperreactivity regulatory locus) and the linked Tim gene family. Nature Immunology, 2, 1109-1116.
[13] Monney, L., Sabatos, C.A., Gaglia, J.L., Ryu, A., Waldner, H., Chernova, T., et al. (2002) Th1-speciflc cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature, 415, 536-541.
[14] Wada, J. and Kanwar, Y.S. (1997) Identification and characterization of galectin-9, a novel beta-galactoside-binding mammalian lectin. The Journal of Biological Chemistry, 272, 6078-6086.
[15] Chou, F.C., Shieh, S.J. and Sytwu, H.K. (2009) Attenuation of Th1 response through galectin-9 and T-cell Ig mucin 3 interaction inhibits autoimmune diabetes in NOD mice. European Journal of Immunology, 39, 2403-2411.
[16] Dardalhon, V., Anderson, A.C., Karman, J., Apetoh, L., Chandwaskar, R., Lee, D.H., et al. (2010) Tim-3/galectin-9 pathway: Regulation of Th1 immunity through promotion of CD11b+Ly-6G+ myeloid cells. The Journal of Immu- nology, 185, 1383-1392.
[17] Wiener, Z., Kohalmi, B., Pocza, P., Jeager, J., Tolgyesi, G., Toth, S., et al. (2007) TIM-3 is expressed in melanoma cells and is upregulated in TGF-beta stimulated mast cells. Journal of Investigative Dermatology, 127, 906-913.
[18] Huang, X., Bai, X., Cao, Y., Wu, J., Huang, M., Tang, D., et al. (2010) Lymphoma endothelium preferentially expresses Tim-3 and facilitates the progression of lymphoma by mediating immune evasion. The Journal of Experi- mental Medicine, 207, 505-520.
[19] Nagahara, K., Arikawa, T., Oomizu, S., Kontani, K., Nobumoto, A., Tateno, H., et al. (2008) Galectin-9 increases Tim-3+dendritic cells and CD8+ T cells and enhances antitumor immunity via galectin-9-Tim-3 interactions. The Journal of Immunology, 181, 7660-7669.
[20] Tian, X., Zhang, A., Qiu, C., Wang, W., Yang, Y., Qiu, C.L., et al. (2015) The upregulation of LAG-3 on T cells defines a subpopulation with functional exhaustion and correlates with disease progression in HIV-infected subjects. The Journal of Immunology, 194, 3873-3882.
[21] Hannier, S., Tournier, M., Bismuth, G. and Triebel, F. (1998) CD3/TCR complex-associated lymphocyte activation gene-3 molecules inhibit CD3/TCR signaling. The Journal of Immunology, 161, 4058-4065.
[22] Huang, C.T., Workman, C.J., Flies, D., Pan, X., Marson, A.L., Zhou, G., et al. (2004) Role of LAG-3 in regulatory T cells. The Journal of Immunology, 21, 503-513.
[23] Prigent, P., Eimir, S., Dreano, M. and Triebel, F. (1999) Lymphocyte activation gene-3 induces tumor regression and antitumor immune responses. European Journal of Immunology, 29, 3867-3876.
[24] Di Carlo, E., Cappello, P., Sorrentino, C., et al. (2005) Immunological mechanisms elicited at the tumour site by lymphocyte activationgene-3(LAG-3) versus 1L-12: Sharing a common Thl antitumour immune pathway. Journal of Pathology, 205, 82-91.
[25] Gresso, J.F., Kelleher, C.C., Harris, T.J., Maris, C.H., Hipkiss, E.L., De Marzo, A., et al. (2007) LAG-3 regulates CD8+ T cell accumulation and effector function in muriue self- and tumor-tolerance systems. Journal of Clinical Investigation, 117, 3383-3392.
[26] Okazaki, T., Okazaki, I., Wang, J., Sugiura, D., Nakaki, F., Yoshida, T., et al. (2011) PD-1 and LAG-3 inhibitory co-receptors act synergistically to prevent autoimmunity in mice. The Journal of Experimental Medicine, 208, 395-407.
[27] Bos, J.D., Zonneveld, I., Das, P.K., Krieg, S.R., van der Loos, C.M. and Kapsenberg, M.L. (1987) The skin immune system (SIS): Distribution and immunophenotype of lymphocyte subpopulations in normal human skin. Journal of Investigative Dermatology, 88, 569-573.
[28] Chemnitz, J.M., Lanfhnco, A.R., Braunskin, I. and Riley, J.L. (2006) B and T lymphocyte attenuator-mediated signal transduction provides a potent inhibitory signal to primary human CD4 T cells that can be initiated by multiple phosphotyrosine motifs. The Journal of Immunology, 176, 6603-6614.
[29] Otsuki, N., Kamimuria, Y., Hashiguchi, M. and Azuma, M. (2006) Expression and function of the B and T lymphocyte attenuator on human T cells. Biochemical and Biophysical Research Communications, 344, 1121-1127.
[30] Said, E.A., Dupuy, F.P., Trautmann, L., Zhang, Y., Shi, Y., El-Far, M., et al. (2010) Programmed death-1-induced interleukin-10 production by monocytes impairs CD4+ T cell activation during HIV infection. Nature Medicine, 16, 452-459.
[31] Tabata, T., Hazama, S. and Yoshino, S. (1999) Th2 subset dominance among peripheral bolld T lymphocyte in patients with digestive cancers. The American Journal of Surgery, 177, 203-208.
[32] Farsani, Z.S., Behmanesh, M. and Sahraian, M.A. (2015) Interleukin-10 but not transforming growth factor-β1 gene expression is up-regulated by vitamin D treatment in multiple sclerosis patients. Journal of the Neurological Sciences, 350, 18-23.