分散液相微萃取技术在氯胺酮检验中的应用
The Dispersive Liquid-Liquid Microextraction Technology in the Application of Ketamine Inspection
DOI: 10.12677/HJCET.2015.52006, PDF, HTML, XML, 下载: 2,447  浏览: 8,380  科研立项经费支持
作者: 彭 鹏, 周朝阳, 桑骏翔, 周彬斌:江苏警官学院,江苏 南京
关键词: 分散液相微萃取气相色谱氯胺酮Dispersive Liquid-Liquid Microextraction Gas Chromatography Ketamine
摘要: 本文利用分散液相微萃取技术(DLLME)与气相色谱法(GC)相结合,建立检验氯胺酮的定性定量分析的新方法。将含有40.0 µL二氯甲烷(萃取剂)的0.5 mL异丙醇(分散剂)作为萃取体系,快速注入到1.0 mL的水溶液中。分散均匀后,以6000 r/min离心5 min后得到沉于离心管底部尖端的沉淀相(15 ± 0.5 µL),取底部沉淀相1.0 µL进行气相色谱分析。方法线性范围1.0~900.0 µg/L (r = 0.9996),检出限0.085 µg/L,相对标准偏差3.5% (n = 3),加标平均回收率94.2%。
Abstract: By combining DLLME and GC phase, a new method for qualitative and quantitative analysis of the inspection of ketamine is presented. A mixture of 40.0 µL dichloromethane and 0.5 mL isopropyl alcohol is the extraction system. First, we quickly add the mixture to 1.0 mL pure water. Then, we centrifuge for 5 min at 6000 r/min speed in a microcentrifuge. There are 15 ± 0.5 µL precipitated phase at the bottom of the centrifuge tube. Last, we analyze 1 mL precipitated phase by gas chro-matography. The linear range of the method is 1.0 - 900.0 µg/L (r = 0.9996). The detection limit of ketamine is 0.085 µg/L. The relative standard deviation of the determination is 3.5% (n = 3). The average recovery rate is 94.2% to add ketamine into the samples.
文章引用:彭鹏, 周朝阳, 桑骏翔, 周彬斌. 分散液相微萃取技术在氯胺酮检验中的应用[J]. 化学工程与技术, 2015, 5(2): 33-39. http://dx.doi.org/10.12677/HJCET.2015.52006

参考文献

[1] Rezaee, M., Assadi, Y., Hosseini, M.M., Aghaee, E., Ahmadi, F. and Berijiani, S.J. (2006) Determination of organic compounds in water using dispersive liquid-liquid microextraction. Journal of Chromatography A, 1-2, 1-9.
[2] 黄骏雄 (1994) 环境样品前处理技术及其进展(一). 环境化学, 1, 95-104.
[3] Berijiani, S., Assadi, Y., Anbia, M., Mi-lani Hosseini, M.R. and Aghaee, E.J. (2006) Dispersive liquid-liquid microextraction combined with gas chromato-graphy-flame photometric detection. Very simple, rapid and sensitive method for the determination of organophosphorus pesticides in water. Journal of Chromatography A, 1123, 1-9.
[4] Wasele, R. and Belleville, F.J. (1994) Gas chromatographic-mass spectrometric procedures used for the identification and determination of morphine, codeine and 6-monoacetylmorphine. Journal of Chromatography A, 1-2, 225-234.
[5] 国菲, 王燕燕, 孟品佳, 张亮, 杨勇, 王继芳 (2009) 分析化学, 9, 1263-1268.
[6] Maurer, H.H. (1992) Systematic toxicological analysis of drugs and their metabolites by gas chromatography-mass spectrometry. Journal of Chromatography A, 1-2, 3-41.
[7] 臧晓欢, 吴秋华, 张美月, 郗国宏, 王志 (2009) 分散液相微萃取技术研究进展. 分析化学, 2, 161-168.
[8] Xiong, C., Ruan, J., Cai, Y. and Tang, Y.J. (2009) Extraction and determination of some psychotropic drugs in urine samples using dispersive liquid-liquid microextraction followed by high-performance liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis, 2, 572-578.
[9] Liang, P. and Sang, H. (2008) Determination of trace lead in biological and water samples with dispersive liquid-liquid microextraction preconcentration. Analytical Biochemistry, 1, 21-25.
[10] Meiwanki, M.B., Chen, W.S., Bai, H.Y., Lind, T.Y. and Fuh, M.R. (2009) Determination of 7-aminoflunitrazepam in urine by dispersive liquid-liquid microextraction with liquid chromatogra-phy-electrospray-tandem mass spectrometry. Talanta, 2, 618-622.