纳米晶对CuZr基非晶合金变形行为的影响
The Effect of Nanocrystals on the Plastic Deformation Ability of CuZr-Based BMG
DOI: 10.12677/MS.2014.46032, PDF, HTML, 下载: 2,510  浏览: 5,418  国家自然科学基金支持
作者: 张临财, 郭啸栋, 侯彦华:江苏省介入医疗器械研究重点实验室,淮安;宋振亚:绍兴文理学院,绍兴
关键词: 纳米晶自由体积变形行为断口形貌Nanocrystals Free Volume Mechanical Behaviors Fracture Morphology
摘要: 本文制备了较大尺寸的CuZr基完全非晶合金以及含有原位析出纳米晶组织的非晶复合材料,在排除试样几何尺寸影响的基础上,研究了上述两种材料在压缩加载下的变形行为,证实了原位析出纳米晶对CuZr基非晶合金的塑性变形能力具有重要作用。同时提出了自由体积和细小纳米晶的共同存在可以有效的提高非晶合金的塑性变形能力,为从非晶合金中制备具有良好塑性的纳米晶非晶复合材料的韧化提供了思路。
Abstract: The CuZr-based fully amorphous alloy and composites containing in-situ nanocrystals with large size were prepared. Without the influence of specimen geometry, their mechanical behaviors under compression were systematically studied and compared, confirming the important role of in- situ nanocrystals on the plastic deformation ability. At the same time, the coexistence of free volume and small nanocrystals can efficiently enhance the plastic deformation ability, providing a useful guideline for large plasticity in BMG composites with nanocrystalline prepared from fully amorphous alloy.
文章引用:张临财, 宋振亚, 郭啸栋, 侯彦华. 纳米晶对CuZr基非晶合金变形行为的影响[J]. 材料科学, 2014, 4(6): 225-232. http://dx.doi.org/10.12677/MS.2014.46032

参考文献

[1] Xu, D.H., Lohwongwatana, B., Duan, G., Johnson, W.L. and Garland, C. (2004) Bulk metallic glass formation in binary Cu-rich alloy series Cu100-xZrx (x=34, 36 38.2, 40 at.%) and mechanical properties of bulk Cu64Zr36 glass. Acta Materialia, 52, 2621-2624.
[2] Xu, D.H., Duan, G. and Johnson, W.L. (2004) Unusual glass-forming ability of bulk amorphous alloys based on ordinary metal copper. Physical Review Letters, 92, Article ID: 245504.
[3] Wei, R., Yang, S., Chang, Y., Li, Y.F., Zhang, C.J., et al. (2014) Mechanical property degradation of a CuZr-based bulk metallic glass composite induced by sub-Tg annealing. Materials & Design, 56, 128-138.
[4] Pan, Y., Zeng, Y., Jing, L., Zhang, L. and Pi, J. (2014) Composition design and mechanical properties of ternary Cu-Zr-Ti bulk metallic glasses. Materials & Design, 55, 773-777.
[5] Inoue, A., Zhang, W., Tsurui, T., Yavari, A.R. and Greer, A.L. (2005) Unusual room-temperature compressive plasticity in nanocrystal-toughened bulk copper-zirconium glass. Philosophical Magazine Letters, 85, 221-229.
[6] Das, J., Tang, M.B., Kim, K.B., Theissmann, R., Baier, F., et al. (2005) “Work-hardenable” ductile bulk metallic glass. Physical Review Letters, 94, Article ID: 205501.
[7] Kim, K.B., Das, J., Baier, F., Tang, M.B., Wang, W.H., et al. (2006) Heterogeneity of a Cu47.5Zr47.5Al5 bulk metallic glass. Applied Physics Letters, 88, Article ID: 051911.
[8] Qiang, J.B., Zhang, W., Xie, G.Q. and Inoue, A. (2007) Unusual room temperature ductility of a Zr-based bulk metallic glass containing nanoparticles. Applied Physics Letters, 90, Article ID: 231907.
[9] Lee, S.W., Huh, M.Y., Fleury, E. and Lee, J.C. (2006) Crystallization-induced plasticity of Cu-Zr containing bulk amorphous alloys. Acta Materialia, 54, 349-355.
[10] Kumar, G., Ohkubo, T., Mukai, T. and Hono, K. (2007) Plasticity and microstructure of Zr-Cu-Al bulk metallic glasses. Scripta Materialia, 57, 173-176.
[11] Huang, Y.J., Shen, J. and Sun, J.F. (2007) Bulk metallic glasses: Smaller is softer. Applied Physics Letters, 90, Article ID: 081919.
[12] Jiang, J.Z., Kato, H., Ohsuna, T., Saida, J., Inoue, A., et al. (2003) Origin of nondetectable x-ray diffraction peaks in nanocomposite CuTiZr alloys. Applied Physics Letters, 83, 3299-3301.
[13] Slipenyuk, A. and Eckert, J. (2004) Correlation between enthalpy change and free volume reduction during structural relaxation of Zr55Cu30Al10Ni5 metallic glass. Scripta Materialia, 50, 39-44.
[14] Homer, E.R. (2014) Examining the initial stages of shear localization in amorphous metals. Acta Materialia, 63, 44-53.
[15] Zhang, L.C., Jiang, F., Zhang, D.H., He, L., Sun, J., et al. (2008) In-situ precipitated nanocrystal beneficial to enhanced plasticity of Cu-Zr based bulk metallic glasses. Advanced Engineering Materials, 10, 943-950.
[16] Bei, H., Xie, S. and George, E.P. (2006) Softening caused by profuse shear banding in a bulk metallic glass. Physical Review Letters, 96, Article ID: 105503.
[17] Revesz, A., Hobor, S., Szabo, P.J., Zhilyaev, A.P. and Kovacs, Z. (2007) Deformation induced crystallization in an amorphous Cu60Zr2OTi2O alloy by high pressure torsion. Materials Science and Engineering A, 460, 459-463.
[18] Chen, M., Inoue, A., Zhang, W. and Sakurai, T. (2006) Extraordinary plasticity of ductile bulk metallic glasses. Physical Review Letters, 96, Article ID: 245502.