Ag嵌入ZnO(10 0)表面的第一性原理研究
Ag Incorporation on ZnO(10 0) Surface: First Principles Study
DOI: 10.12677/APP.2014.48018, PDF, HTML, 下载: 2,710  浏览: 9,679 
作者: 胡宏铎:湖北工程职业学院信息工程系,黄石;陈兰丽:江西科技师范大学江西省通信与光电子重点实验室,南昌
关键词: 嵌入第一性原理电子结构ZnO表面Incorporation First-Principles Electronic Structure ZnO Surface
摘要: 基于密度泛函理论,采用第一性原理计算了Ag嵌入ZnO(10 0)面的几何结构和导电性以及电子结构,分析了Ag掺杂ZnO(10 0)面的表面结构弛豫和Ag嵌入ZnO (10 0)不同层的形成能情况。计算结果表明:和纯净ZnO(10 0)相比,Ag嵌入ZnO(10 0)受结构弛豫影响比较明显。同时发现,Ag嵌入ZnO(10 0)第一层的形成能最低,因此,Ag嵌入在第一层的情况最稳定,这表明Ag原子更容易集中在表面层,而不是占据体内位置。通过对纯净和掺杂体系的态密度图分析发现,Ag嵌入ZnO(10 0)表面表现为p型特征,有利于p型的制备。然而,Ag嵌入ZnO(10 0)第一层的离化能较高,不利于p型导电。
Abstract: Based on the density function theory, we have performed first principles calculations of energetic stability and conductive properties and electronic structure of Ag incorporation on ZnO (10 0) surface, and after calculations, we have analyzed the relaxation of the structure and formation energy of Ag incorporation on ZnO (10 0) surface at different layers. Our results show that com-pared with pure ZnO (10 0), there is an obvious effect on the relaxation of the structure for Ag incorporation on ZnO (10 0) surface. Simultaneously, we found that the formation energy of the Ag incorporation on the first layer is the lowest in all cases. Therefore, Ag incorporation on the first layer is the most stable, which indicates that Ag atom prefers to collect in the surface layer instead of the bulk. And we found that the system for Ag incorporation on ZnO (10 0) surface demonstrates as p-type, which is in favors of fabricating p-type material. However, the ionization of Ag incorporation on ZnO (10 0) surface is much higher, which hinders the electronic ionize.
文章引用:胡宏铎, 陈兰丽. Ag嵌入ZnO(10 0)表面的第一性原理研究[J]. 应用物理, 2014, 4(8): 155-161. http://dx.doi.org/10.12677/APP.2014.48018

参考文献

[1] Zeng, Y.J., Ye, Z.Z., Xu, W.Z., Li, D.Y., Lu, J.G., Zhu, L.P. and Zhao, B.H. (2006) Dopant source choice for forma- tion of p-type ZnO: Li acceptor. Applied Physics Letters, 88, Article ID: 062107.
[2] Wan, Q.X., Xiong, Z.H., Dai, J.N., Rao, J.P. and Jiang, F.Y. (2008) First-principles study of Ag-based p-type doping difficulty in ZnO. Optical Ma-terials, 30, 817-821.
[3] Xu, W.Z., Ye, Z.Z., Zhou, T., Zhao, B.H., Huang, J.Y., et al. (2004) Low-pressure MOCVD growth of p-type ZnO thin films by using NO as the dopant source. Journal of Crystal Growth, 265, 133.
[4] Tae, H.K, Jin, J.P. and Sang, H.N, (2009) Fabrication of Mg-doped ZnO thin films by laser ablation of Zn: Mg target. Applied Surface Science, 255, 5264-5266.
[5] Fan, J. and Freer, R. (1995) The roles played by Ag and Al dopants in controlling the electrical properties of ZnO va- ristors. Journal of Applied Physics, 77, 4795-4800.
[6] Gouvea, C.A.K., Wypych, F. and Moraes, S.G. (2000) Semiconductor-assisted Photodegradation of lignin, dye, and Kraft effluent by Ag-doped ZnO. Chemosphere, 40, 427-432.
[7] Xue, H., Xu, X.L., Chen, Y., et al. (2008) Influence of Ag-doping on the optical properties of ZnO films. Applied Sur- face Science, 255, 1806-1810.
[8] Duan, L., Lin, B.X. and Fu, Z.X. (2006) Enhancement of ultraviolet emissions from ZnO Films by Ag doping. Applied Physics Letters, 88, 232110-1-232110-232113.
[9] Charton, C. and Fahland, M. (2003) Optical properties of thin Ag films deposited by magnetron sputtering. Surface and Coatings Technology, 174-175, 181-186.
[10] Duan, L., Lin, B.X. and Fu, Z.X. (2006) Enhancement of ultraviolet emissions from ZnO films by Ag doping. Applied Surface Science, 88, 232110-1-232110-232113.
[11] Kresse, G. and Hafner, J. (1994) Ab initio molecular dynamics for liquid metals. Physical Review B, 47, 558.
[12] Kresse, G. and Furthermuller, J. (1996) Efficiency of ab-initio total energy calculations using a plane-wave basis set. Physical Review B, 54, 11169.
[13] Lee, C.J., Lee, T.J., Lyu, S.C., Zhang, Y., Ruh, H. and Lee, H.J. (2002) Field emission from well aligned zinc oxide nanowires grown at low temperature. Applied Physics Letters, 81, 3648(1-3).
[14] Xu, H., Zhang, R.Q. and Tong, S.Y. (2010) Interaction of O2, H2O, N2 and O3 with stoichiometric and reduced ZnO (10 0) surface. Physical Review B, 82, 155326(1-6).
[15] Yan, Y.F. and Wei, S.H. (2008) Doping asymmetry in wide-bandgap semiconductors: Origins and solutions. Physica Status Solidi (b), 245, 641-652.
[16] 熊志华 (2008) ZnO掺杂改性的第一性原理研究. 博士学位论文, 南昌大学, 南昌.