SWAT模型和新安江模型在汉江旬河流域的应用比较研究
Comparative Study on the Performance of SWAT and Xin’anjiang Models in Xunhe Basin
DOI: 10.12677/JWRR.2014.34038, PDF, HTML,  被引量 下载: 3,310  浏览: 7,615  国家科技经费支持
作者: 李泽君, 刘 攀, 张 旺, 陈西臻, 邓 超:武汉大学,水资源与水电工程科学国家重点实验室,武汉
关键词: SWAT模型新安江模型旬河径流模拟SWAT Model Xin’anjiang Model Xunhe Basin Runoff Simulation
摘要: 选取分布式模型中的SWAT模型与集总式模型中的新安江模型进行流域径流模拟,以旬河流域为例,以确定性系数、相对误差以及均方根误差作为模型模拟效果的评价指标,探究不同结构的模型在径流模拟中的差异性。模拟结果表明:SWAT模型和新安江模型在日径流过程模拟中都表现出较好的适用性,新安江模型优于SWAT模型;从不同流量等级(10%高水,50%中水,40%低水)的模拟效果来看,SWAT模型在中、低水的流量模拟中表现较好,但高水部分的模拟效果较新安江模型差;由于高水流量的均方差较中水、低水大,当采用确定性系数作为参数率定的目标函数时,会引起模型优先拟合高水部分,导致中、低水模拟效果不够理想。
Abstract: In this study, the SWAT and Xin’anjiang models were selected respectively as the representatives of the distributed and lumped hydrological models to simulate rainfall-runoff process in the Xunhe basin, with the measurements of the Nash-Suttcliffe efficiency coefficient, relative error and root mean square. The results illustrated that both models work well at daily rainfall-runoff process simulation, and the Xin’anjiang model outperforms the SWAT model. Based on the results of various flow (10% high flow, 50% middle flow and 40% low flow), the SWAT model effectively simulates the water quantity of middle and low flows, although can’t compete with Xin’anjiang model in simulation of high flow. The results also show that selecting Nash-Suttcliffe efficiency coefficient as the objective function causes that the model priors fit the high flow better than the middle and low flow, because the mean square error of high flow is larger than that of the middle and low flow.
文章引用:李泽君, 刘攀, 张旺, 陈西臻, 邓超. SWAT模型和新安江模型在汉江旬河流域的应用比较研究[J]. 水资源研究, 2014, 3(4): 307-314. http://dx.doi.org/10.12677/JWRR.2014.34038

参考文献

[1] 徐宗学. 水文模型: 回顾与展望[J]. 北京师范大学学报: 自然科学版, 2010, 46(3): 278-289. XU Zongxue. Hydrological models: Past, present and future. Journal of Beijing Normal University: Natural Science, 2010, 46 (3): 278-289.
[2] CHAPLOT, V. Impact of DEM mesh size and soil map scale on SWAT runoff, sediment, and NO3-N loads predictions. Journal of Hydrology, 2005, 312(1): 207-222.
[3] STRAUCH, M., BERNHOFER, C., KOIDE, S., VOLK, M., LORZ, C. and MAKESCHIN, F. Using precipitation data ensemble for uncertainty analysis in SWAT streamflow simulation. Journal of Hydrology, 2012, 414-415: 413-424.
[4] TOBIN, K. J., BENNETT, M. E. Using SWAT to model streamflow in two river basins with ground and satellite precipitation data1. Journal of the American Water Resources Association, 2009, 45(1): 253-271.
[5] 李其峰, 苏飞. SWAT模型在径流模拟中的研究进展[J]. 安徽农业科学, 2013, 41(23): 9871-9872. LI Qifeng, SU Fei. Progress in application of runoff simulation based on SWAT. Journal of Anhui Agricultural Sciences, 2013, 41(23): 9871-9872.
[6] 程磊, 徐宗学, 罗睿, 米艳娇. SWAT 在干旱半干旱地区的应用——以窟野河流域为例[J]. 地理研究, 2009, 28(1): 65-73. CHENG Lei, XU Zongxue, LUO Rui and MI Yan-jiao. SWAT application in arid and semi-arid region: A case study in the Kuye river basin. Geographical Research, 2009, 28(1): 65-73.
[7] 冯夏清, 章光新, 尹雄锐. 基于SWAT模型的乌裕尔河流域气候变化的水文响应[J]. 地理科学进展,2010, 29(7): 827-832. FENG Xiaqing, ZHANG Guangxin and YIN Xiongrui. Study on the hydrological response to climate change in Wuyur river basin based on the SWAT model. Progress in Geography, 2010, 29(7): 827-832.
[8] 林凯荣, 魏新平, 黄淑娴, 何艳虎. SWAT 模型在东江流域的应用研究[J]. 水文, 2013, 33(4): 32-36. LIN Kairong, WEI Xinping, HUANG Shuxian and HE Yanhu. Application of SWAT model in Dongjiang river basin. Journal of China Hydrology, 2013, 33(4): 32-36.
[9] 赵人俊. 流域水文模拟: 新安江模型与陕北模型[M]. 北京: 水利电力出版社, 1984. ZHAO Renjun. Watershed hydrological simulation: Xin’anjiang model and Shanbei model. Beijing: Water Resources and Electric Power Press, 1984.
[10] 赵人俊, 王佩兰, 胡凤彬. 新安江模型的根据及模型参数与自然条件的关系[J]. 河海大学学报: 自然科学版, 2004, 20(1): 52-59. ZHAO Renjun, WANG Peilan and HU Fengbin. Relations between parameter values and corresponding natural condi-tions of Xin’anjiang model. Journal of Hohai University: Natural Sciences, 2004, 20(1): 52-59.
[11] 王中根, 刘昌明, 黄友波. SWAT模型的原理, 结构及应用研究[J]. 地理科学进展, 2003, 22(1): 79-86. WANG Zhonggen, LIU Changming and HUANG Youbo. The theory of SWAT model and its application. Progress in Geography, 2003, 22(1): 79-86.
[12] SHI, P., CHEN, C., SRINIVASAN, R., ZHANG, X., CAI, T., FANG, X. and LI, Q. Evaluating the SWAT model for hydrological modeling in the Xixian watershed and a comparison with the XAJ model. Water Resources Management, 2011, 25(10), 2595-2612.
[13] LEGATES, D. R., MCCABE, G. J. Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resources Research, 1999, 35(1): 233-241.
[14] 董磊华, 熊立华, 万民. 基于贝叶斯模型加权平均方法的水文模型不确定性分析[J]. 水利学报, 2011, 42(9): 1065-1074. DONG Leihua, XIONG Lihua and WAN Min. Uncertainty analysis of hydrological modeling using the Bayesian Model Averaging Method. Journal of Hydraulic Engineering, 2011, 42(9): 1065-1074.
[15] 刘移胜, 熊立华. 气候与土地利用变化对旬河流域径流的影响研究[J]. 水资源研究, 2013, 2(3): 181-187. LIU Yisheng, XIONG Lihua. Research on streamflow responses to land use change and climate variability in Xunhe catchment. Journal of Water Resources Research, 2013, 2(3): 181-187.