铝蜂窝材料动态压缩力学性能及吸能分析
A Study on Dynamic Compressive Mechanical Behaviors of Aluminum Honeycombs
DOI: 10.12677/MS.2014.43015, PDF, HTML,  被引量 下载: 3,204  浏览: 7,257  国家科技经费支持
作者: 唐 爽, 邓运来:中南大学材料科学与工程学院,长沙;中南大学有色金属材料科学与工程教育部重点实验室,长沙;姜科达, 雷郴祁, 杨 昭:中南大学有色金属材料科学与工程教育部重点实验室,长沙
关键词: 铝蜂窝动态力学特性吸能特性霍普金森压杆Aluminum Honeycomb Dynamic Mechanical Properties Energy Absorption SHPB
摘要: 采用分离式霍普金森压杆(SHPB)技术,研究了边长为1.0~1.83 mm,箔厚度为0.04~0.06 mm,相对密度为0.05~0.06的三种5052 H18铝合金蜂窝的动态压缩行为。结果表明:铝合金蜂窝在高应变率条件下动态压缩与其准静态压缩的应力–应变曲线均具有明显的多孔材料三阶段特征,其塑性屈服平台的应变量大于65%,单位体积吸能为3.32~5.03 MJ/m3,最大吸能效率为0.65~0.7。虽然只有边长为最小的(1 mm)铝蜂窝的失稳屈服极限应力明显高于稳态屈服平台应力,但三种铝蜂窝的稳态屈服平台应力均具有明显的应变率敏感特性,边长/箔厚相同的两种铝蜂窝(1.0 mm/0.04 mm, 1.5 mm/0.06 mm)的体积吸能与吸能效率差别不大。
Abstract: Split Hopkinson Pressure Bar (SHPB) method was employed to determine the compressive dynamic mechanical properties of three kinds of honeycombs, which were made of Al alloy 5052H18 with side lengths (b) of 1.0 - 1.83 mm, foil thicknesses (t) of 0.04 - 0.06 mm and relative densities (ρ) of 0.05 - 0.06. Results indicated that: at high strain rate, the dynamic stress-strain curves of the Al honeycombs show a general "three-stage" characteristic of porous materials. The densification strains are greater than 65%. The specific range of energy absorption is 3.32 - 5.03 MJ/m3, and the range of the maximum values of energy absorption efficiency is 0.65 - 0.7. Even though only the yield stress of the Al honeycomb with the shortest side length (1 mm) is greater than itself plateau stress, all the tested Al honeycombs have the character of strain rate sensitivity. The specific energy absorption and the energy absorption efficiency have no significant difference between the two Al honeycombs with the same ratio of side lengths/foil thickness (1.0 mm/0.04 mm, 1.5 mm/0.06 mm).
文章引用:唐爽, 邓运来, 姜科达, 雷郴祁, 杨昭. 铝蜂窝材料动态压缩力学性能及吸能分析[J]. 材料科学, 2014, 4(3): 96-102. http://dx.doi.org/10.12677/MS.2014.43015

参考文献

[1] Gibson, L.J. and Ashby, M.F. (1997) Cellular solids: Structures and properties. 2nd Edition, Cambridge University Press, Cambridge.
[2] 王瑞, 林振荣, 卢玉松, 等 (2010) 泡沫铝复合材料的动态压缩实验研究及吸能分析. 兵器材料科学与工程, 6, 40-43.
[3] 杨益, 李晓军, 郭彦朋 (2010) 夹芯材料发展及防护结构应用综述. 兵器材料科学与工程, 4, 92-95.
[4] Yamashita, M. and Gotoh, M. (2005) Impact behavior of honeycomb structures with various cell specifications numerical simulation and experiment. International Journal of Impact Engineering, 32, 618-630.
[5] 陈金宝, 聂宏, 柏合民 (2008) 月球着陆条件对铝蜂窝材料缓冲性能的影响. 机械工程材料, 1, 48-50.
[6] 王闯, 刘荣强, 邓宗全, 等 (2008) 蜂窝结构的冲击动力学性能的试验及数值研究. 振动与冲击, 27, 56-61.
[7] 卢芳云, Chen, W. and Frew, D.J. (2002) 软材料的SHPB实验设计. 爆炸与冲击, 22, 15-19.
[8] 姜锡权, 陶洁, 王玉志 (2007) 改进的霍普金森压杆技术在聚氨酯泡沫塑料动态力学性能研究中的应用. 爆炸与冲击, 27, 358-365.
[9] 邹广平, 唱忠良, 明如海, 等 (2009) 泡沫铝夹心板的冲击性能研究. 兵工学报, 12, 276-279.
[10] Paul, A. and Ramamurty, U. (2000) Strain rate sensitivity of a closed-cell aluminum foam. Material Science and Engineering A, 281, 1-7.
[11] Xu, S., Beynon, J.H., Ruan, D., et al. (2012) Strength enhancement of aluminium honeycombs caused by entrapped air under dynamic out-of-plane compression. International Journal of Impact Engineering, 47, 1-13.
[12] Shen, J.H., Xie, Y.M., Huang, X.D., et al. (2013) Behaviour of luffa sponge material under dynamic loading. International Journal of Impact Engineering, 57, 17-26.