介质厚度不同对碳纳米管场效应晶体管的影响
The Influence of Different Gate Oxide Thickness on Carbon Nanotube Transistors
DOI: 10.12677/APP.2014.45011, PDF, HTML, 下载: 3,297  浏览: 11,545  国家自然科学基金支持
作者: 余文娟:宁波大学理学院,宁波
关键词: 碳纳米管场效应晶体管非平衡格林函数无规则电报信号杂音Carbon Nanotube Field Effect Transistor Non-Equilibrium Green Function Random Telegraph Signal Noise
摘要: 本文运用非平衡格林函数理论,计算碳纳米管场效应晶体管栅极氧化层中由一个缺陷电荷引起的无规则电报信号杂音。文章模拟计算了该杂音强弱与栅极氧化层厚度的依赖关系,研究单层和复合绝缘层两种不同情况下碳纳米管场效应晶体管中的无规则电报信号杂音。
Abstract: In this thesis, non-equilibrium Green function theory is applied to calculate random-telegraph-signal (RTS) noises caused by a single defect in gate oxide of carbon nanotube field-effect (CNFET) transistors. We investigate systematically how RTS noises depend on gate oxide thickness and discuss the RTS noises with two different situations: a single layer and a composite layer.
文章引用:余文娟. 介质厚度不同对碳纳米管场效应晶体管的影响[J]. 应用物理, 2014, 4(5): 76-84. http://dx.doi.org/10.12677/APP.2014.45011

参考文献

[1] Iijima, S. (1991) Helical microtubules of graphitic carbon. Nature, 354, 56-58.
[2] Javey, A., Guo, J., Wang, Q., et al. (2003) Ballistic carbon nanotubes field-effect transistors. Nature, 424, 654-657.
[3] Heinzeetal, S. (2002) Carbon nanotubes as schottky barrier transistors. Physical Review Letters, 89, Article ID: 106801.
[4] Collins, P.G., Fuhrer, M.S. and Zettl, A. (2000) 1/f noise in carbon nanotubes. Applied Physics Letters, 76, 894-896.
[5] Chan, J., Burke, B., Evans, K., et al. (2009) Reversal of current blockade through multiple trap correlations. Physical Review B, 80, Article ID: 033402.
[6] Liu, F., Bao, M.Q., Kim, H.-J., Wang, K.L., et al. (2005) Giant random telegraph signals in the carbon nanotubes as a single defect probe. Applied Physics Letters, 86, Article ID: 163102.
[7] Lee, J.-W., Lee, B.H., Shin, H., et al. (2010) Investigation of random telegraph noise in gate-induced drain leakage and gate edge direct tunneling currents of high-k MOSFETs. IEEE, 57, 913-918.
[8] Neophytou, N., Kienle, D., et al. (2006) Influence of defects on nanotube transistor performance. Applied Physics Let- ters, 88, Article ID: 242106.
[9] Chan, J., Burke, B., Evans, K., Williams, K.A., Vasudevan, S., Liu, M., Campbell, J. and Ghos, A.W. (2009) Reversal of current blockade in nanotube-based field effect transistors through multiple trap correlations. Physical Review B, 80, Article ID: 033402.
[10] Liu, F., Wang, K.L., et al. (2006) Random telegraph signals and noise behaviors in carbon nanotube transistors. Ap- plied Physics Letters, 89, Article ID: 243101.
[11] Choi, C. and Choi, R. (2012) The electrical and structural properties of HfO2/SrTiO3 stacked gate dielectric with TiN metal gate electrode. Thin Solid Films, 521, 42-44.
[12] Campbell, S.A., Kim, H.-S. et al. (1999) Titanium dioxide(TiO2)-based gate insulators. IEEE Electron Device Letters, 43, 383-392.
[13] Lee, J.-W., Lee, B.H., Shin, H. and Lee, J.-H. (2010) Investigation of random telegraph noise in gate-induced drain leakage and gate edge direct tunneling currents of high-k MOSFETs. IEEE Transactions on Electron Devices, 57, 913- 918.
[14] Wang, N.-P., Heinze, S., et al. (2007) Random-telegraph-signal noise and device variability in ballistic nanotube tran- sistors. Nano Letters, 7, 910-913.
[15] Datta, S. (1995) Electronic transport in mesoscopic systems. Cambridge University Press, Cambridge.
[16] Brandbyge, M., Mozos, J.-L., et al. (2002) Density-functional method for nonequilibrium electron transport. Physical Review B, 65, Article ID: 165401.
[17] Svizhenko, A., Anantram, M.P., et al. (2002) Two dimensional quantum mechanical modeling of nanotransistors. Journal of Applied Physics, 91, 2343-2354.
[18] Heinze, S., Wang, N.-P. and Tersoff, J. (2005) Electromigration forces on ions in carbon nanotubes. Physical Review Letters, 95, Article ID: 186802.
[19] Dutta, P. and Horn, P.M. (1981) Low-frequency fluctuations in solids: 1/f noise. Reviews of Modern Physics, 53, 497-499.
[20] Weissman, M.B. (1988) 1/f noise and other slow nonexponential kinetics in condensed matter, Reviews of Modern Physics, 60, 537-539.