TAS/STBC系统在相关Rayleigh信道下的性能分析
Performance Analysis of TAS/STBC Systems over Correlated Rayleigh Fading Channels
DOI: 10.12677/APP.2014.45010, PDF, HTML, 下载: 2,565  浏览: 8,138  科研立项经费支持
作者: 徐凌伟:中国海洋大学信息科学与工程学院,青岛
关键词: 发射天线选择正交空时分组码相关Rayleigh信道平均符号误码率Transmit Antenna Selection Orthogonal Space Time Block Code Correlated Rayleigh Fading Channels Average Symbol Error Probability
摘要: 针对相关Rayleigh信道,研究了使用发射天线选择(TAS)和正交空时分组码(OSTBC)的多输入多输出(MIMO)系统的平均符号误码率(ASEP)性能。首先采用了非常适合室内信道的Laplacian模型,得到了两个天线之间的相关系数,它是天线间隔,功率方位角谱(PAS)的标准差和平均到达角(AOA)三者的函数。然后引入了相关矩阵,建立了TAS/STBC系统的相关信道模型,基于等效的标量加性高斯白噪声(AWGN)信道的方法,得到了系统在接收端信噪比的表达式。最后对不同条件下的系统的平均符号误码率(ASEP)性能做了仿真,仿真结果表明:TAS/STBC系统的ASEP性能受到空间相关性的影响,尤其是天线间隔,功率方位角谱(PAS)的标准差和平均到达角(AOA)三者的影响。
Abstract: The average symbol error probability (ASEP) of multiple-input multiple-output (MIMO) systems employing transmit antenna selection (TAS) and orthogonal space-time block code (OSTBC) over correlated Rayleigh fading channels is considered. We first derive the correlation coefficients between two antenna elements as a function of the antenna spacing, the standard deviation of the power azimuth spectrum (PAS) and the mean angle of arrival (AOA) for the truncated Laplacian model, which is appropriate for indoor channels. Then we introduce the correlation matrix, and establish a correlated channel model. Based on the equivalent scalar additive white Gaussian noise (AWGN) channel approach, the exact form expressions of the signal-to-noise ratio (SNR) at the receiving end are derived. The system performance under different conditions was evaluated through numerical simulations. Numerical results show that: the ASEP performance is affected by the spatial correlation, which varies according to the antenna spacing, PAS standard deviation and mean AOA.
文章引用:徐凌伟. TAS/STBC系统在相关Rayleigh信道下的性能分析[J]. 应用物理, 2014, 4(5): 68-75. http://dx.doi.org/10.12677/APP.2014.45010

参考文献

[1] 张蕊, 张利军, 原梦钰, 等 (2011) 多输入多输出宽带时变信道分布散射模型研究. 电波科学学报, 26, 74-78.
[2] 梁彦, 束锋, 张一晋, Stevan, B. (2013) 稀疏多径信道环境中MIMO-OFDM系统的IQ不平衡和信道联合估计. 电子与信息学报, 35, 280-284.
[3] 刘留, 陶成, 邱佳慧, 等 (2011) 高速铁路宽带无线信道测量方法研究. 铁道学报, 33, 48-53.
[4] 周涛, 陶成, 刘留, 孙溶辰, 谈振辉 (2012) 基于WCDMA的高铁宽带无线信道测量方法研究. 铁道学报, 34, 55-60.
[5] Gore, D.A. and Paulraj, A.J. (2002) MIMO antenna subset selection with space-time coding. IEEE Transactions on Signal Processing, 50, 2580-2588.
[6] Yang, L. and Qin, J. (2007) Performance of Alamouti scheme with transmit antenna selection for M-ary signals. IEEE Transactions on Wireless Communications, 11, 423-425.
[7] Kaviani, S.T. and Ellambura, C. (2006) Closed-form BER analysis for antenna selection using orthogonal space-time block codes. IEEE Communication Letters, 10, 704-706.
[8] 李光球, 江林超 (2010) 发射天线选择空时分组码的误符号率分析. 电波科学学报, 25, 291-296.
[9] Coskun A.F., Kucur, O. and Altunbas, I. (2010) Performance of space-time block codes with transmit antenna selection in Nakagami-m fading channels. European Wireless Conference, Lucca, 12-15 April 2010, 171-176.
[10] Sandhu, S. and Paulraj, A. (2000) Space-time block codes: A capacity perspective. IEEE Communication Letters, 12, 384-386.
[11] 李晓辉, 易克初, 黑永强, 刘乃安 (2007) 相关MIMO信道下可变数目天线选择算法. 系统仿真学报, 24, 5759- 5762.
[12] Cho, Y.S., Kim, J., Yang, W.Y. and Kang, C.G. (2010) MIMO-OFDM Wireless communications with MATLAB. Wi- ley, New York.