乙二醇体系中阳极氧化TiO2纳米管制备的研究
Fabrication of Anodic TiO2 Nanotube Arrays in Ethylene Glycol-Based Electrolyte
DOI: 10.12677/MS.2014.42005, PDF, HTML, 下载: 3,701  浏览: 11,999 
作者: 徐 鸿, 廖晓明, 尹光福, 叶许梦, 刘一樵:四川大学材料科学与工程学院,成都
关键词: TiO2纳米管阳极氧化乙二醇定量关系TiO2 Nanotube; Anodization; Ethylene Glycol; Quantitative Relationship
摘要: 采用恒压和原位升压阳极氧化法在含0.3 wt.% NH4F6 vol.% H2O的乙二醇电解液中,在钛表面分别制备出单层和双层的TiO2纳米管,并通过扫描电子显微镜观察了表面和断面形貌。研究了阳极氧化电压、时间对纳米管管径、管长的影响,初步获得了其相互间的定量关系。结果表明,在实验条件下,纳米管管径和管长随电压增加而增加,在一定电压范围内管径随电压呈线性增长关系,管长在不同电压下表现出不同的增长率;纳米管管长随氧化时间的增加而线性增加,管径则无明显变化
Abstract: Single-layer and two-layer TiO2 nanotube arrays were fabricated by anodization of pure Ti in ethylene glycol-based electrolyte containing 0.3 wt.% NH4F and 6 vol.% distilled water in potentiostatic and in-situ voltage up mode respectively. The top-view or cross-sectional morphologies were observed by scanning electron microscope. The effects of applied voltage and anodization time on tube diameter and tube length were studied, as well as their quantitative relationships were preliminarily summarized. The results show that the tube diameter and the length of TiO2 nanotube arrays increase with the applied voltage, and there is a linear dependence between tube diameter and potential in a certain range. The growth rates of the tube length are different at different voltage. The tube length linearly increases with the anodization time, while the tube diameter is little affected by the anodization time.
文章引用:徐鸿, 廖晓明, 尹光福, 叶许梦, 刘一樵. 乙二醇体系中阳极氧化TiO2纳米管制备的研究[J]. 材料科学, 2014, 4(2): 22-28. http://dx.doi.org/10.12677/MS.2014.42005

参考文献

[1] Zwilling, V., Darque-Ceretti, E., Boutry-Forveille, A., et al. (1999) Structure and Physicochemistry of Anodic Oxide Films on Titanium and TA6V Alloy. Surface and Interface Analysis, 27, 629-637.
[2] Beranek, R., Hildebrand, H. and Schmuki, P. (2003) Self-Organized Porous Titanium Oxide Prepared in H2SO4/HF Electrolytes. Electrochemical and Solid-State Letters, 6, B12-B14.
[3] Macak, J.M., Sirotna, K. and Schmuki, P. (2005) Self-Organized Porous Titanium Oxide Prepared in Na2SO4/NaF Electrolytes. Electrochimica Acta, 50, 3679-3684.
[4] Albu, S.P., Ghicov, A., Macak, J.M., et al. (2007) 250 µm Long Anodic TiO2 Nanotubes with Hexagonal Self-Ordering. Physica Status Solidi (RRL)—Rapid Research Letters, 1, R65-R67.
[5] Bauer, S., Kleber, S. and Schmuki, P. (2006) TiO2 Nanotubes: Tailoring the Geometry in H3PO4/HF Electrolytes. Electrochemistry Communications, 8, 1321-1325.
[6] Macak, J., Hildebrand, H., Marten-Jahns, U., et al. (2008) Mechanistic Aspects and Growth of Large Diameter Self-Organized TiO2 Nanotubes. Journal of Electroanalytical Chemistry, 621, 254-266.
[7] 梁建鹤, 肖秀峰, 刘榕芳等 (2010) 宽电压范围下阳极氧化制备TiO2纳米管阵列及其热稳定性. 无机化学学报, 26, 112-119.
[8] Roy, P., Berger, S. and Schmuki, P. (2011) TiO2 Nanotubes: Synthesis and Applications. Angewandte Chemie International Edition, 50, 2904-2939.
[9] Macak, J.M., Albu, S., Kim, D.H., et al. (2007) Multilayer TiO2 Nanotube Formation by Two-Step Anodization. Electrochemical and Solid-State Letters, 10, K28.
[10] Bae, C., Yoon, Y., Yoon, W.-S., et al. (2010) Hierarchical Titania Nanotubes with Self-Branched Crystalline Nanorods. ACS Applied Materials & Interfaces, 2, 1581-1587.
[11] Song, Y.-Y., Schmidt-Stein, F., Bauer, S., et al. (2009) Amphiphilic TiO2 Nanotube Arrays: An Ac-tively Controllable Drug Delivery System. Journal of the American Chemical Society, 131, 4230-4232.
[12] Mohapatra, S., Misra, M., Mahajan, V., et al. (2008) Synthesis of Y-Branched TiO2 Nanotubes. Materials Letters, 62, 1772-1774.
[13] Yasuda, K., Macak, J.M., Berger, S., et al. (2007) Mechanistic Aspects of the Self-Organization Process for Oxide Nanotube Formation on Valve Metals. Journal of the Electrochemical Society, 154, C472.
[14] Butail, G., Ganesan, P.G., Teki, R., et al. (2011) Branched Titania Nanotubes through Anodization Voltage Control. Thin Solid Films, 520, 235-238.
[15] Berger, S., Kunze, J., Schmuki, P., et al. (2010) Influence of Water Content on the Growth of Anodic TiO2 Nanotubes in Fluoride-Containing Ethylene Glycol Electrolytes. Journal of the Electrochemical Society, 157, C18.
[16] Guan, D. and Wang, Y. (2012) Synthesis and Growth Mechanism of Multilayer TiO2 Nanotube Arrays. Nanoscale, 4, 2968-2977.
[17] Li, H., Wang, J., Huang, K., et al. (2011) In-Situ Preparation of Multi-Layer TiO2 Nanotube Array Thin Films by Anodic Oxidation Method. Materials Letters, 65, 1188-1190.
[18] Macak, J.M. and Schmuki, P. (2006) Anodic Growth of Self-Organized Anodic TiO2 Nanotubes in Viscous Electrolytes. Electrochimica Acta, 52, 1258-1264.
[19] LeClere, D., Velota, A., Skeldon, P., et al. (2008) Tracer Investigation of Pore Formation in Anodic Titania. Journal of the Electrochemical Society, 155, C487-C494.