微波助离子液体中Nd掺杂纳米TiO2催化剂的制备及其微波强化光催化活性
Microwave Assisted Preparation of Nd-Doped Nano-TiO2 Photo-Catalysts in Ionic Liquids and Its Microwave Enhanced Photo-Catalytic Activity
DOI: 10.12677/HJCET.2013.35029, PDF, HTML,  被引量 下载: 3,005  浏览: 9,286  国家自然科学基金支持
作者: 蒋文建*, 孙婧, 毕先钧:云南师范大学化学化工学院,昆明
关键词: 离子液体纳米TiO2光催化降解微波强化Nd掺杂Ionic Liquids; Nano-TiO2; Photocatalytic Degradation; Microwave Strengthening; Nd-Doping
摘要: 在离子液体介质中,采用溶胶–凝胶法,以钛酸正丁酯为前驱物,合成Nd掺杂纳米TiO2光催化剂TiO2-Nd。采用IR、XRD对催化剂的结构进行了表征,以甲基橙为模拟污染物,在微波超声波组合催化合成仪中,在恒温(25℃)下,分别利用微波辐射(MW)、紫外光照(UV)及微波辐射+紫外光照(MW/UV)三种降解条件,考察了煅烧温度、煅烧时间、微波干燥功率、微波干燥时间、离子液体用量和Nd掺杂量对其光催化活性的影响。试验表明,煅烧温度为650℃、煅烧时间为2 h、微波干燥功率为210 W、微波干燥时间为20 min、离子液体加入量为5.6 mL和Nd掺杂量为n(Nd)/n(Ti) = 0.005时,TiO2-Nd的催化活性最高,且在MW、UV和MW/UV三种降解条件下,TiO2-Nd对甲基橙的降解率分别为11.58%,80.67%,86.59%,这表明微波与紫外光照有很好的协同作用,微波–紫外光照具有强化Nd掺杂纳米TiO2降解甲基橙的效果。
Abstract: Using Ti(OBu)4 as the precursor, Nd-doped nano-TiO2 photo-catalysts were prepared by the sol-gel method in ionic liquids. The IR and XRD were used to characterize the structure of the catalysts. At a constant temperature (25℃), using the three conditions of MW, UV, MW/UV respectively, the effects of the calcinations temperature, the calci- nations time, the power of microwave drying, microwave drying time, the amount of ionic liquid and the Nd doping amount on the photo-catalytic activity of TiO2-Nd for degradation of methyl orange were investigated in the combina- tion of catalytic synthesis of microwave ultrasonic instrument. The tests indicated that the catalytic activity of TiO2-Nd reached the highest level under the following conditions: calcination temperature (650℃), calcination time (2 h), mi-crowave drying power (210 W), microwave drying time (20 min), ionic liquid volume (5.6 mL) and Nd doping amount (n(Nd)/n(Ti) = 0.005). The degradation rate of methyl orange under three conditions were 11.58%, 80.67%, 86.59%, and degradation effect of methyl orange under three conditions: MW/UV > UV > MW. The results showed that MW had a very good synergy with UV and microwave had the effect of strengthening TiO2-Nd degradation of methyl orange.
文章引用:蒋文建, 孙婧, 毕先钧. 微波助离子液体中Nd掺杂纳米TiO2催化剂的制备及其微波强化光催化活性[J]. 化学工程与技术, 2013, 3(5): 161-168. http://dx.doi.org/10.12677/HJCET.2013.35029

参考文献

[1] 刘守新, 刘鸿. 光催化及光催化基础与应用[M]. 北京: 化学工业出版社, 2006: 207-208.
[2] 张桂琴, 毕先钧. 离子液体介质中微波辅助制备铁掺杂纳米TiO2及光催化活性[J]. 分子催化, 2010, 24(1): 542-548.
[3] J. S. Liang, Z. Z. Jin and J. Wang. Surface electronic structures of RE/TiO2 nanometer powders. Journal of the Chinese Rare Earth Society, 2002, 20(1): 74-76.
[4] 何春萍. 钕掺杂纳米二氧化钛光催化活性研究[J]. 吉林化工学院学报, 2007, 24(3): 27-29.
[5] 郭蔚, 龚叶, 毕先钧, 等. 微波助离子液体中TiO2/聚苯乙烯复合材料的制备与光催化性能研究[J]. 分子催化, 2010, 24(1): 57-63.
[6] 张西旺, 王怡中. 微波强化光催化氧化技术研究现状及展望[J]. 化学进展, 2005, 17(1): 91-95.
[7] 李旦振, 郑宜, 付贤智. 微波–光催化耦合效应及其机理研究[J]. 物理化学学报, 2002, 18(4): 332-335.
[8] P. Reubroycharoen, T. Vitidsant, Y. Liu, et al. Highly active Fischer-Tropsch synthesis Co/SiO2 catalysts prepared from mi- crowave irradiation. Catalysis Communications, 2007, 8: 375- 378.
[9] 李惠娟, 蒋晓原, 郑小明. 低温等离子体与催化耦合脱除NOx的研究进展[J]. 分子催化, 2007, 21(6): 599-604.
[10] 李莉, 张秀芬, 马禹, 等. 微波增强H3PW12O40/TiO2光催化降解染料和水杨酸的研究[J]. 分子催化, 2008, 22(6): 532-537.
[11] 辛嘉英, 赵永杰, 夏春谷, 等. 离子液体的生物催化反应[J]. 分子催化, 2006, 20(1): 76-83.
[12] 杨艳琼, 王昭, 毕先钧. 微波助离子液体中纳米TiO2/PMMA复合材料的制备及光催化性能[J]. 分子催化, 2008, 22(4): 362-367.
[13] 李丽, 王昭, 毕先钧. 离子液体中微波辅助制备硫掺杂纳米TiO2光催化剂[J]. 工业催化, 2008, 16(6): 65-68.
[14] 张静. 氧化钛表面相变及其光催化性能紫外拉曼光谱的研究[D]. 中国科学院研究生院, 2006.
[15] Y. F. Chan, C. Y. Lee, M. Y. Yin, et al. The effect of calcination temperature on the crystallin-ity of TiO2 nano-powders. Journal of Crystal Growth, 2003, 247(3-4): 363-370.
[16] 吕敏春, 严莲荷, 王剑虹, 等. 光、微波、热催化氧化效果的比较[J]. 工业水处理, 2003, 23(8): 36-38.
[17] X. Q. Chen, H. B. Liu, G. B. Gu. Preparation of nanometer crys- talline TiO2 with high photo-catalytic activity by pyrolysis of methyl organic compounds and photo-catalytic mechanism. Materials Chemistry and Physics, 2005, 91(2-3): 317-324.
[18] 王嘉. 难降解有机污染物的微波辅助紫外光催化氧化的研究[D]. 华中科技大学, 2006.
[19] 陈崧哲, 徐盛明, 徐刚, 等. 稀土元素在光催化剂中的应用及作用机理[J]. 稀有金属材料与工程, 2006, 35(4): 505-509.
[20] 计兵. 钕离子掺杂对TiO2相组成和光催化活性的影响[J]. 佳木斯大学学报(自然科学版), 2004, 22(1): 77-79.