碟子湖磷污染的植物修复研究
The Research of the Plants on Phosphorus Pollution Restoration in the Saucer Lake
DOI: 10.12677/AEP.2013.33014, PDF, HTML, 下载: 3,067  浏览: 8,774  科研立项经费支持
作者: 王 林*, 张娜, 胡月, 胡绵好:江西财经大学旅游与城市管理学院,南昌;邹丽芳:南昌大学基础医学院生理学教研室,南昌
关键词: 生态修复生物量生物模量Ecological Restoration; Phosphorus; Biomass; Biological Modulus
摘要: 磷是富营养化水体中的特征污染物,是植物和微生物的主要营养元素。而水体富营养化是水体污染中最为普遍的现象,也是国内外水环境污染治理的难题。本文以生态修复技术为切入点,研究了碟子湖湿地中酸模、蔊菜、稗草、莎草、野生胡萝卜、虉草六种优势植物的生物量和对污水中磷的净化效果,分析了根系和地上部分生物量与污水净化效果之间的关系。根据植被的生长环境条件和植被的自身特性探究出最优组合,使其适应于当地局部地区的气候及土壤环境,治理水体污染。
Abstract: Phosphorus is the specific pollutant in eutrophication of water body and it is a major nutrient element of plants and microorganisms. Water eutrophication is not only the most common phenomenon, but also a difficult prob-lem in water pollution environment treatment at home and abroad. This paper, based on ecological restoration technol-ogy as the breakthrough point, studies some plants in saucer lake wetland, including Rumex acetosa L., Rorippa indica L., Hiern, Echinochloa crusgalli L., Beauv, Cyperus rotundus L., Daucus carota L., Phalaris arundinacea Linn, the six dominant plant biomass and the purification effect of phosphorus in the sewage, and also analyzes the relationship be-tween roots, biomass above ground and the effect of the sewage purification. According to the growth environment conditions of vegetation and vegetation of its own characteristics, our team explores the optimal combination which makes it adapt to the climate and soil environment of the local area to govern the water pollution.
文章引用:王林, 张娜, 胡月, 邹丽芳, 胡绵好. 碟子湖磷污染的植物修复研究[J]. 环境保护前沿, 2013, 3(3): 84-89. http://dx.doi.org/10.12677/AEP.2013.33014

参考文献

[1] 汤家喜, 孙丽娜, 孙铁珩等. 河岸缓冲带对氮磷的截留转化及其生态恢复研究进展[J]. 生态环境学报, 2012, 21(8): 1514-1520.
[2] 王苏民, 窦鸿良. 中国湖泊志[M]. 北京: 科学出版社, 1998, 3-21.
[3] Y. W. Chen, B. Q. Qin, K. Teubner, et al. Long-term dy-namics of phytoplankton assemblage microcystis-domination in Lake Taihu, a large shallow lake in China. Journal of Plankton Research, 2003, 25(4): 445-453.
[4] H. W. Paerl. Nuisance phytoplankton blooms in coastal, estuarine and inland waters. Limnology and Ocean-ography, 1988, 33: 823-847.
[5] 秦伯强. 长江中下游浅水湖泊富营养化发生机制与控制途径初探[J]. 湖泊科学, 2002, 14(3): 193-202.
[6] 熊小群, 杨荣清. 江西水系[M]. 武汉: 长江出版社, 2007.
[7] 南昌市统计局. 南昌市经济社会统计年鉴[M]. 北京: 统计出版社, 2010.
[8] 张海荣. 近50年人类活动与艾溪湖富营养化过程关系研究[D]. 江内师范大学, 2007.
[9] 南昌市环境监测站. 南昌市环境监测站对艾溪湖进行水质调查监测. 2005. http//www.lsnc.cn.
[10] 王文君, 黄道明. 国内外河流生态修复研究进展[J]. 水生态学杂志, 2012, 33(4): 142-145.
[11] NY/T 2017-2011, 植物中氮、磷、钾的测定[S]. 北京: 中国农业出版社, 2011.
[12] NY/T 88-1988, 土壤全磷测定法[S]. 北京: 中国标准出版社, 1988.
[13] GB 11893-89, 水质–总磷的测定——钼酸铵分光光度法[S]. 北京:中国环境科学出版社, 1989.
[14] 郭爱红, 牛福生, 贾久满. 几种湿地植物对景观水体富营养化治理研究[J]. 北方环境, 2010, 11(1): 36-39.
[15] R. R. Brooks. Plants that hyper accu-mulate heavy metals. New York: CAB International, 1989, 1-2.
[16] 郑久华, 冯永军, 于开芹等. 复垦基质重金属污染的植物修复试验研究[J]. 农业工程学报, 2008, 24(2): 84-88
[17] 聂发辉. 关于超富集植物的新理解[J]. 生态环境, 2005, 14(1): 36-138.
[18] 吴双桃. 镉污染土壤超富集植物选择和镉–锌复合污染实验研究[D]. 中南林学院, 2003.