电沉积–热氧化制备微/纳米针形貌的条纹ZnO薄膜及其光催化性能
The Stripe ZnO Films with Micro/Nano Needles Preparation by Elctrodeposition-Thermal Oxidation and Their Photocatalytic Property
DOI: 10.12677/MS.2013.33025, PDF, HTML, 下载: 3,290  浏览: 7,399  国家自然科学基金支持
作者: 张南, 邵辰, 马荣伟, 漆寒梅, 李翔, 牛振江:浙江师范大学物理化学研究所
关键词: ZnO薄膜条纹形貌微/纳米针电沉积–热氧化光催化ZnO Thin Film; Stripe Morphology; Micro/Nano Needle; Elctrodeposition-Thermal Oxidation; Photocatalysis
摘要: 以聚乙烯吡咯烷酮(PVP)为添加剂,在304不锈钢基底上,从硫酸锌氯化铵体系中用0.03 A·cm−2恒电流阴极沉积得到条纹状的金属Zn膜,经350 1 h450 2 h两步热氧化得到具有大量微/纳米针的条纹ZnO薄膜。通过XRDSEM分析了金属Zn薄膜氧化前后的结构和表面形貌,初步讨论了条纹状金属Zn膜形成机理。具有微/纳米针形貌的条纹ZnO薄膜显示出较高的光催化降解罗丹明B的性能。
Abstract: In presence of polyvinyl pyrrolidone (PVP), the stripe morphology of Zn films were galvanostatically deposited on 304 stainless steel sheets at 0.03 A·cm−2 in zinc sulfate-ammonium chloride solution. The stripe ZnO films with a lot of micro/nano needles were obtained by thermal oxidation of the stripe Zn films at 350 for 1 h and 450 for 2 h in air. The structures and morphologies of Zn and ZnO films were studied by X-ray diffraction (XRD) and Scanning electron microscope (SEM). The mechanism of formation stripe morphology Zn films was discussed preliminarily. The results of photocatalytic tests reveal that the stripe ZnO films with micro/nano needles show higher activities for degradation of rhodamine B (RhB).
文章引用:张南, 邵辰, 马荣伟, 漆寒梅, 李翔, 牛振江. 电沉积–热氧化制备微/纳米针形貌的条纹ZnO薄膜及其光催化性能[J]. 材料科学, 2013, 3(3): 132-137. http://dx.doi.org/10.12677/MS.2013.33025

参考文献

[1] Q. Wan, T. H. Wang and J. C. Zhao. Enhanced photocatalytic activity of ZnO nanotetrapods. Applied Physics Letters, 2005, 87(8): 083105.
[2] 李鹏, 邵玉田, 楼莹, 周颖华, 牛振江. 微/纳米多孔氧化锌薄膜的电化学制备及其光催化性能[J]. 中国有色金属学报, 2009, 19(9): 1649-1657.
[3] 漆寒梅, 张南, 周彬, 牛振江. 不锈钢表面ZnO-尖晶石复合氧化膜的制备及其可见光光催化性能[J]. 世界科技研究与发展, 2012, 34(4): 542-546.
[4] W. Yu, C. Pan. Low temperature thermal oxidation synthesis of ZnO nanoneedles and the growth mechanism. Materials Chemistry and Physics, 2009, 115(1): 74-79.
[5] 张保平, 唐谟堂, 杨声海. 锌氨配合体系电积锌研究[J]. 湿法冶金, 2001, 20(4): 175-178.
[6] J. Yu, L. Wang, L. Su, X. Ai and H. Yang. Temperature effects on the electrodeposition of zinc. Journal of the Electrochemical Society, 2003, 150(1): C19-C23.
[7] A. Gomes, M. I. da Silva Pereira. Pulsed electrodeposition of Zn in the presence of surfactants. Electrochimica Acta, 2006, 51(7): 1342-1350.
[8] N. Hiroaki, F. Hisaaki. Morphology control of zinc deposits of electrogalvanized steel sheets. Tetsu to Hagane, 2002, 88(5): 236-242.
[9] M. J. Willey, J. Reid and A. C. West. Adsorption kinetics of polyvinylpyrrolidone during copper electrodeposition. Electrochemical and Solid-State Letters, 2007, 10(4): D38-D41.
[10] 张杰, 戴亚堂, 张欢, 周龙平, 李常雄, 贾玉蓉. 添加剂对电沉积锌粉结构和形貌的影响[J]. 武汉理工大学学报, 2012, 34(2): 17-21.
[11] D. Yuvaraj, K. N. Rao. Selective growth of ZnO nanoneedles by thermal oxidation of Zn microstructures. Materials Science and Engineering: B, 2009, 164(3): 195-199.
[12] N. F. Mott. The theory of the formation of protective oxide films on metals. III. Transactions of the Faraday Society, 1947, 43: 429-434.
[13] N. Cabrera, N. F. Mott. Theory of the oxidation of metals. Reports on Progress in Physics, 1949, 12(1): 163-184.
[14] G. Trejo, H. Ruiz, R. O. Borges and Y. Meas. Influence of polyethoxylated additives on zinc electrodeposition from acidic solutions. Journal of Applied Electrochemistry, 2001, 31(6): 685- 692.
[15] J. Huang, F. Kim, A. R. Tao, S. Connor and P. Yang. Spontaneous formation of nanoparticle stripe patterns through dewetting. Nat Mater, 2005, 4(12): 896-900.
[16] L. Mirkova, G. Maurin, I. Krastev and C. Tsvetkova. Hydrogen evolution and permeation into steel during zinc electroplating; effect of organic additives. Journal of Applied Electrochemistry, 2001, 31(6): 647-654.
[17] T. Watanabe, T. Takizawa and K. Honda. Photocatalysis through excitation of adsorbates. 1. Highly efficient N-deethylation of rhodamine B adsorbed to cadmium sulfide. The Journal of Physical Chemistry, 1977, 81(19): 1845-1851.