MgO(111)上ZnO薄膜的外延生长及其结构和光学特性
Structural and Optical Properties of ZnO Thin Films Grown on MgO(111) Substrates by Molecular Beam Epitaxy
DOI: 10.12677/MS.2013.33022, PDF, HTML, XML, 下载: 3,931  浏览: 12,089  国家自然科学基金支持
作者: 杜达敏, 王惠琼*, 周华, 李亚平, 黄巍, 徐建芳, 蔡加法, 崔琳哲*, 张纯淼, 陈晓航, 詹华翰, 康俊勇:厦门大学物理系,福建省半导体材料及应用重点实验室
关键词: 分子束外延反射高能电子衍射透射谱缓冲层位错密度MBE; RHEED; XL; Buffer; Dislocation Density
摘要: 由于ZnO在光电器件的应用前景,其高质量薄膜的制备是研究热点之一。本文通过分子束外延生长法在MgO(111)单晶衬底上生长ZnO薄膜,表征了其结构和特性,探讨了不同生长条件对薄膜质量的影响。结果表明,先低温生长ZnO缓冲层,再高温生长ZnO薄膜,有望提高ZnO薄膜的质量。原位反射高能电子束衍射(RHEED)和异位的X射线衍射(XRD)分别测量出薄膜的面内结构和沿[0001]的单晶域高取向结构,并确定薄膜和衬底的外延关系为ZnO[01-10]//MgO[1-10]ZnO[2-1-10]//MgO[11-2]。透射谱显示了ZnO的特征光学带隙。
Abstract: The growth of high quality ZnO films is highly desirable due to the promising applications of ZnO in optoelectronics. In this paper, ZnO films were grown on the MgO(111) substrates via the growth technique of molecular- beam epitaxy and their structural and optoelectronic properties were characterized. In particular, the influence of growth condition on the film qualify was investigated. The results show that, inducing a low temperature ZnO buffer layer before the high temperature growth of ZnO films will help to improve the film quality. In situ reflection high-energy electron diffraction (RHEED) and ex situ X-ray Diffraction (XRD) measurements indicate that the ZnO film and the MgO substrate follow the epitaxial relationship: ZnO[01-10]//MgO[1-10] and ZnO[2-1-10]//MgO[11-2]. Transmission Spectra show the characteristic optical bandgap of ZnO.
文章引用:杜达敏, 王惠琼, 周华, 李亚平, 黄巍, 徐建芳, 蔡加法, 崔琳哲, 张纯淼, 陈晓航, 詹华翰, 康俊勇. MgO(111)上ZnO薄膜的外延生长及其结构和光学特性[J]. 材料科学, 2013, 3(3): 116-120. http://dx.doi.org/10.12677/MS.2013.33022

参考文献

[1] D. M. Bannall, Y. F. Chen, Z. Zhu, et al. Optically pumped lasing of ZnO at room temperature. Applied Physics Letters, 1997, 70(17): 2230-2232.
[2] Z. K. Tang, G. K. L. Wong, P. Yu, et al. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystalline thin films. Applied Physics Letters, 1998, 73: 3270-3272.
[3] Y. R. Yu, T. S. Lee, J. A. Lubguban, et al. Next generation of Oxide photonic devices: ZnO-based ultraviolet light emitting diodes. Applied Physics Letters, 2006, 88(24): 241108-241111.
[4] M. H. Huang, S. Mao, H. Feik, et al. Room-temperature ultraviolet nanowire nanolasers. Science, 2001, 292(5523): 1897-1899.
[5] H. S. Kim, F. Lugo, S. J. Pearton, et al. Phoaphorus doped ZnO light emitting diodes fabricated via pulsed deposition. Applied Physics Letters, 2008, 92: 112108-112111.
[6] F. Hamdani, A. E. Botchkarev, H. Tang, et al. Effect of buffer layer and substrate surface polarity on the growth by molecular beam epitaxy of GaN on ZnO. Applied Physics Letters, 1997, 71(21): 3111-3113.
[7] Y. F. Chen, S. K. Hong, H. J. Ko, et al. Effects of an extremely thin buffer on heteroepitaxy with large lattice mismatch. Applied Physics Letters, 2001, 78(21): 3352-3354.
[8] Y. F. Chen, H. J. Ko, S. K. Hong, et al. Layer-by-layer growth of ZnO epilayer on Al2O3(0001) by using a MgO buffer layer. Applied Physics Letters, 2000, 76: 559-561.
[9] Y. F. Chen, H. J. Ko, S. K. Hong, et al. Evolution of initial layers of plasma-assisted MBE grown ZnO on (0001) GaN/sapphire. Journal of Crystal Growth, 2000, 214-215: 81-86.
[10] H. Kato, K. Miyamoto, M. Sano, et al. Polarity control of ZnO on sapphire by varying the MgO buffer layer thickness. Applied Physics Letters, 2004, 84(22): 4562-4564.
[11] B. J. Jin, S. Im, S. Y. Lee, et al. Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition. Thin Solid Films, 2000, 366(1-2): 107-110.
[12] G. T. Du, Y. G. Cui, X. X. Chuan, et al. Visual-infrared electroluminescence emission from ZnO/GaAs heterojunctions grown by metal-organic chemical vapor deposition. Applied Physics Letters, 2007, 790: 243504-6.
[13] W. Huang, J. Y. Dai, J. H. Hao, et al. Structure and resistance switching properties of ZnO/SrTiO3/GaAs heterostructure grown by laser molecular beam epitaxy. Applied Physics Letters, 2010, 97(16): 162905.
[14] V. M. Voora, T. Hofmann, M. Brandt, et al. Resistive hysteresis and interface charge coupling in BaTiO3-ZnO heterostructures. Applied Physics Letters, 2009, 94: 142904.
[15] Y. L. Wu, L. W. Zhang, G. L. Xie, et al. Fabrication and transport propertied of ZnO/Nb—1 wt%—doped SrTiO3 epitaxial heterojunctions. Applied Physics Letters, 2008, 92(1): 012115.
[16] H. Zhou, H. Q. Wang, L. J. Wu, et al. Wurtzite ZnO(001) films grown on cubic MgO(001) with bulk-like opto-electronic pro- perties. Applied Physics Letters, 2011, 99(14): 141917.
[17] H. Zhou, H. Q. Wang, X. X. Liao, et al. Tailoring of polar and nonpolar ZnO planes on MgO(001) substrates through molecular beam epitaxy. Nanoscale Research Letters, 2012, 7: 184.
[18] X. H. Zheng, H. Chen, Z. B. Yan, et al. Determination of twist angle in plane mosaic spread GaN films by high-resolution X-ray diffraction. Journal of crystal Growth, 2003, 255(1-2): 63-67.