机械工程与技术  >> Vol. 5 No. 4 (December 2016)

基于威布尔分布316L不锈钢扩散焊接工艺参数与可靠性关系研究
The Study of the Relation of 316L Stainless Steel Diffusion Welding Process Parameters Based on the Weibull Distribution and the Reliability

DOI: 10.12677/MET.2016.54038, PDF, , XML, 下载: 1,018  浏览: 2,626 

作者: 安子良, 侯梅芳:上海应用技术学院轨道交通学院,上海;张利, 李音君:上海地铁第三运营有限公司,上海

关键词: 扩散焊316L不锈钢正交实验威布尔分布Diffusion Bonding 316L Stainless Steel Orthogonal Experimental Weibull Distribution

摘要: 基于正交试验设计方法,本文优化了焊接工艺参数对316L不锈钢扩散焊接头的研究,并对焊接温度、焊接压力和保温时间三个因素进行了试验验证,得到常温下最佳参数设置为1100℃焊接温度,10 MPA焊接压力,3小时保温时间。同时对焊接头的圆棒试样的抗拉强度数据进行三参数威布尔分布。分布的位置参数为147.42,尺度参数为148.9139,形状参数为1.6336,强度数据的平均值为281 MPA。
Abstract: Based on an orthogonal experimental design method, optimal welding process parameters are studied on 316L stainless steel diffusion welding joint. Three factors, i.e. welding temperature, pressure and holding time, are distinguished. The optimal parameter set is obtained to have welding temperature of 1100˚C, welding pressure of 10 MPa and holding time of 3 hrs. At the same time, a statistical estimation is performed for the tensile strength data of the welding joint round bar samples following three-parameter Weibul distribution. Estimated statistical parameters of the distribution are with a position parameter of 147.42, scale parameter of 148.9139 and shape parameter of 1.6336, respectively. Average value of the strength data is 281 MPa.

文章引用: 安子良, 张利, 李音君, 侯梅芳. 基于威布尔分布316L不锈钢扩散焊接工艺参数与可靠性关系研究[J]. 机械工程与技术, 2016, 5(4): 315-321. http://dx.doi.org/10.12677/MET.2016.54038

参考文献

[1] 李京龙, 孙福, 熊江涛, 等. 不锈钢分层实体扩散焊制造中的变形控制[J]. 铸造技术, 2006, 27(11): 1235-1237.
[2] Takeda, T., Kunitomi, K., Horie, T., et al. (1997) Feasibility Study on the Applicability of a Diffusion-Welded Compact Intermediate Heat Exchanger to Next-Generation High Temperature Gas-Cooled Reactor. Nuclear Engineering and Design, 168, 11-21.
https://doi.org/10.1016/S0029-5493(96)01361-1
[3] Nishi, H., Araki, T. and Eto, M. (1998) Diffusion Bonding of Alumina Dispersion-Strengthened Copper to 316L Stainless Steel with Interlayer Metals. Fusion Engineering and Design, 39-40, 505-511.
https://doi.org/10.1016/S0920-3796(98)00233-6
[4] Nishi, H. and Kikuchi, K. (1998) Influence of Brazing Conditions on the Strength of Brazed Joints of Alumina Dispersion-Strengthened Copper to 316 Stainless Teel. Journal of Nuclear Materials, 258-263, 281-288.
[5] Kliauga, A.M., Travessa, D. and Ferrante, M. (2001) Al2O3/Ti Interlayer/AISI304 Diffusion Bonded Joint: Microstructural Characterization of the Two Interfaces. Materials Characterization, 46, 65-74.
https://doi.org/10.1016/S1044-5803(00)00095-4
[6] 杨德. 试验设计与分析[M]. 北京: 中国农业出版, 2002: 171-171.
[7] 黄春跃, 周德俭, 吴兆华. 基于正交试验设计的塑封球栅栏阵列器件焊点工艺参数与可靠性关系研究[J]. 电子学报, 2005, 33(5): 788-792.
[8] 安子良, 轩福贞, 涂善东. 316L 不锈钢扩散焊接工艺与接头性能的研究[J].上海应用技术学院学报, 2012, 12(4): 257-260.
[9] 何正风. MATLAB概率与数理统计分析[M]. 北京: 机械工业出版社, 2012.
[10] 凌丹. 威布尔分布模型及其在机械可靠性中的应用研究[D]: [博士学位论文]. 成都: 电子科技大学, 2010.
[11] 傅惠民, 高镇同. 确定威布尔分布三参数的相关系数优化法[J]. 航空学报, 1990, 11(7): A322-A327.
[12] 张秀之. 概率权重矩法及其在Weibull分布参数估计中的应用[J]. 海洋预报, 1994, 11(3): 56-61.
[13] 史景钊, 蒋国良. 用相关系数法估计威布尔分布的位置参数[J]. 河南农业大学学报, 1995, 29(2): 167-171.
[14] 郭必柱, 邓建. 可靠性分析威布尔三参数估计方法比较分析[J]. 科学技术与工程, 2010, 10(25): 6117-6122.
[15] 赵冰锋, 吴素君. 三参数威布尔分布参数估计方法[J]. 金属热处理, 2007(增刊1): 443-446.
[16] Elmahdy, E. and Aboutahoun, A. (2013) A New Approach for Parameter Estimation of Finite Weibull Mixture Distributions for Reliability Modeling. Applied Mathematical Modelling, 37, 1800-1810.
https://doi.org/10.1016/j.apm.2012.04.023