锰–稀土单分子磁体的研究进展
Research Progress in Mn-Ln Single Molecule Magnets
DOI: 10.12677/japc.2024.134080, PDF, HTML, XML,    科研立项经费支持
作者: 唐正强, 徐嘉琦, 解梦婷, 胡翔宇, 梁皓然, 王窦尊, 郑 祺:南通大学化学化工学院,江苏 南通;王 金*:南通大学化学化工学院,江苏 南通;南通市智能与新能源材料及器件重点实验室,江苏 南通
关键词: 锰–稀土单分子磁体结构磁性Mn-Ln Single Molecule Magnets Structure Magnetism
摘要: 自首例{Mn12Ac}单分子磁体(SMMs)报道以来,对高核含锰单分子磁体的研究引起了人们极大的兴趣,成为当前介观物理,磁学,纳米材料等学科的研究热点。Mn-Ln异金属单分子磁体,因为体系中含有两种不同属性的金属离子,其配位特性也不同,对于同一种配体还经常存在着竞争配位,反应往往比同核单分子磁体的反应要复杂,所以相对同核单分子磁体,Mn-Ln异金属单分子磁体报道的相对较少。因此,本文通过对近年来典型的锰–稀土SMMs进行综述,以期为3d-4f SMMs的发展奠定一定的基础。
Abstract: Since the first {Mn12Ac} single molecule magnet (SMMs) is reported, the study of high nuclear Mn-containing SMMs has aroused great interest, and has become a research hotspot in mesoscopic physics, magnetism, nanomaterials and other fields. Mn-Ln heterometallic monomolecular magnets, because the system contains two metal ions with different properties, exhibit different coordination characteristics. For the same ligand, there is often competitive coordination, and the reaction is often more complex than that of homonuclear monomolecular magnets. Thus, compared with homonuclear monomolecular magnets, Mn-Ln heterometallic monomolecular magnets have relatively few reports. Therefore, this paper reviews the typical Mn-Ln SMMs in recent years, in order to lay a certain foundation for the development of 3d-4f SMMs.
文章引用:唐正强, 徐嘉琦, 解梦婷, 胡翔宇, 梁皓然, 王窦尊, 郑祺, 王金. 锰–稀土单分子磁体的研究进展[J]. 物理化学进展, 2024, 13(4): 810-822. https://doi.org/10.12677/japc.2024.134080

1. 引言

Mn原子中含有大量的未配对电子,使其具有多变的氧化态。在MnIII氧化态中,最外层的电子轨道包括四个电子。当三个电子占据t2g轨道,而唯一的电子位于eg轨道,产生高自旋态,有助于获得磁性能较好的配合物。并且,当MnII和MnIII在同一配合物中共存时,会产生不同的自旋中心。首例锰单分子磁体{Mn12Ac}即为混合价态的锰配合物[1],其成功的合成引起了人们的极大关注。随后,大量的锰配合物被合成,如{Mn84} [2]、{Mn30} [3]等。然而随着自旋基态值的增加,磁性能并没有提升。

2008年Eliseo Ruiz等[4]对两个{Mn6}配合物的磁相互作用及磁各向异性进行了研究,研究结果表明磁各向异性的大小主要决定于自旋轨道耦合的强度,不能通过分别优化自旋基态值及各向异性大小来控制,即高的自旋基态值和大的各向异性不能同时兼得。要获得高的自旋基态值往往需要降低体系中的磁各向异性。因而,在配合物中利用具有高的自旋基态值和大的各向异性的稀土离子是制备具有高能垒单分子磁体的重要途径。但由于稀土离子中的4f电子会受到5s和5p电子的屏蔽,使至金属离子中心之间的磁相互作用较弱,而且稀土离子大多存在磁化强度量子隧穿效应,从而导致磁各向异性能垒降低,这对于构造出具有良好性质的稀土单分子磁体具有一定局限性。因此探索如何抑制稀土离子的量子隧穿效应来提高磁各向异性能垒一直是稀土单分子磁体研究中亟需解决的关键性问题。

近年来,通过在过渡配合物中,引入高的自旋基态值和大的各向异性的稀土离子,提升单分子磁体的磁性能。一方面,由于过渡金属离子磁交换作用较强,另一方面,稀土离子高的自旋基态值和大的各向异性,使3d-4f异金属配合物具有异于同金属配合物的磁特性。因此一系列高性能的3d-4f SMMs被报道[5] [6]。其中,Mn原子中含有大量的未配对电子,使其具有多变的氧化态,因此Mn-Ln SMMs由于其广阔的研究前景受到了科学家们的广泛关注。

2. 锰–稀土单分子磁体的研究进展

目前,已报道的锰–稀土单分子磁体如表1所示,本论文仅选其中一些例子进行描述,并根据其核数进行分类,以研究其结构与磁性行为之间的关系。

Table 1. The magnetic data of Mn-Ln SMMs

1. 锰–稀土单分子磁体的磁性数据

Complexes

Hdc/kOe

Ueff/K

τ0/s

v/mT/s

TB/K

Ref.

[MnIIDy(H2L11)(NO3)3](CH3OH)2

1

12.98

2.33 × 107

[7]

[DyMn(opch)2(OAc)(MeOH)(H2O)2]

1

5.3

51.8

4.9 × 105

1.8 × 107

[8]

[MnIIILa(dpm)4(MeO)2(MeOH)2]

4

15.0

4.0 × 108

[9]

[MnIIIPr(dpm)4(MeO)2(MeOH)2]

4

8.2

4.1 × 107

[9]

[MnIIIEu(dpm)4(MeO)2(MeOH)2]

2

13.0

3.6 × 108

[9]

[{DyIIINaI[12-MCsha,Mn(III)-4] (DMF)0.5(H2O)3.5}2 (odba)4]∙15DMF·4C2H5OH∙2H2O

1

25.5(7) − 30.5(9)

1.2(4) − 4.7(7) × 108

[10]

[Tb2Mn(C7H5O2)8] (1)

0

18.79 (4)

2.56 × 108

[11]

[Dy2Mn(C7H5O2)8] (2)

0

15.4 (4)

92.4 (2)

2.99 × 105

5.37 × 108

[11]

TBA2[Mn4Dy2(teaH)4(N3)12] (3)

0

43.8

1.47 × 1010

[12]

[Tb2Mn(QCl)8]∙CHCl3 (4)

0

20.3 (6)

3.7 × 108

[13]

[Dy2Mn(QCl)8]∙CHCl3 (5)

0

44.5 (1)

1.06 × 109

[13]

[Mn2Dy2(L1H)4(μ-OAc)2](NO3)2∙2CH3OH∙3H2O (6)

0

24.0

8.30 × 109

[14]

[Mn2Tb2(L1H)4(μ-OAc)2](NO3)2∙2H2O∙2CH3OH∙Et2O (7)

0

48.3

1.63 × 108

[14]

[MnIII2Nd2(bdea)2(bdeaH)2(piv)6]∙2MeCN

0

10.0

1.4 × 106

[15]

[MnII2Tb2(hmp)6(NO3)4(CH3OH)2][MnII2Tb2(hmp)6(NO3)4(H2O)2]

0.5

3.84

6.43 × 107

[16]

[MnII2Dy2(hmp)6(NO3)4(CH3OH)2][MnII2Dy2(hmp)6(NO3)4(H2O)2]

0.5

3.86

1.24 × 106

[16]

[Dy2Mn2(L5)4(NO3)2(DMF)2]

0

11

1 × 108

[17]

[MnIII2Dy2(μ3-OH)2(p-Me-PhCO2)6(L7)2]

0

19.32

5.64 × 108

[18]

[MnIII2Dy2(μ3-O)2(O2CtBu)10][Et3NH]2

0

29

4.6 × 106

[19]

[L4DyMn3O4(OAc)3(DMF)2][OTf]

0

27

2.13 × 108

[20]

0.8

32

1.77 × 108

[MnIII2Dy3(L3H)4(NO3)(HOCH3)]ClO4∙NO3

2

13

5 × 106

[21]

[MnIII4Dy(HL7)4{(py)2CO2}2Cl2](OH)

0.8

7.9

4.67 × 104

[22]

[Mn2Dy(HL7)2(hmp)2(CH3COO)2N3]n∙H2O

1.5

9.6

5.8 (5) × 108

[22]

[MnIII6O3(saO)6(OCH3)6La2(CH3OH)4(H2O)2] (8)

0

32.8

5.8 × 1010

0.7

1.8

[23]

[MnIII6O3(saO)6(OCH3)6Tb2(CH3OH)4(H2O)2] (9)

0

103

1.6 × 1010

0.7

4.5

[23]

[NMe4]2[MnIII2Dy2(tmp)2(O2CMe3)4(NO3)4]∙2MeCN∙0.5 H2O

0

15

3.31 × 107

[24]

[Mn4Tb2O2(O2CBut)6(edteH2)2(NO3)2]

0

20.3

1.4 × 1011

35

0.9

[25]

[MnIII2MnII2Tb2(µ4-O)2(edteH2)2(benz)6]∙2MeCN

0

21.2

4.0 × 109

[26]

[MnIII2MnII2Tb2(µ4-O)2(edteH2)2(piv)6(NO3)2]∙4MeCN

0

20.9

5.7 × 106

[26]

[MnIII2MnII2Tb2(µ4-O)2(edteH2)2(piv)8]∙4MeCN

0

19.9

1.3 × 105

[26]

[Mn4Dy2(L12)4(CH3O)2(H2O)6Cl6][Cl]∙2H2O

0

1.5

[27]

续表

[MnIIMnIII2Dy4(mosao)2(mosaoH)4(piv)4(N-mdea)4]∙x MeCN

0

9.27

7.37 × 106

[28]

[MnIIMnIII2Y4(mosao)2(mosaoH)4(piv)4(N-mdea)4]∙x MeCN

0

13.83

3.50 × 107

[28]

[Gd2Mn6O3(OMe)4(Et-sao)6(acac)2(MeOH)4]∙0.7MeCN (10)

0

24

1.7 × 109

[29]

[Tb2Mn6O3(OMe)4(Me-sao)6(acac)2(MeOH)3(EtOH)]∙0.5 H2O (11)

0

46

[29]

[Mn5Tb4(O)6(mdea)2(mdeaH)2(Piv)6(NO3)4(H2O)2]∙2 MeCN

0

33

4.5 × 109

[30]

[Mn5Dy4(O)6(mdea)2(mdeaH)2(Piv)6(NO3)4(H2O)2]∙2 MeCN

0

38.6

3.0 × 109

2

1.9

[30]

[Mn5Y4(O)6(mdea)2(mdeaH)2(Piv)6(NO3)4(H2O)2]∙2MeCN

4.5

20.2

2.6 × 108

[30]

[MnIII4Tb4(OH)4(C4)4(NO3)2(DMF)6(H2O)6](OH)2

0

3.0

1 × 107

[31]

[MnIII4Dy4(OH)4(C4)4(NO3)2(DMF)6(H2O)6](OH)2

0

5.0

3 × 108

[31]

[Mn4Dy4(nBu-dea)4(μ3-HCOO)4(μ-OMe)4(μ-O2CEt)4 (O2CEt)4(MeOH)4]

0

12

3.5 × 107

140

0.5

[32]

[Mn4Sm4(nBu-dea)4(μ3-HCOO)4(μ-OMe)4(μ-O2CEt)4 (O2CEt)4(MeOH)4]

2

15

4.9 × 108

[33]

[n-PrNH2]3[Mn6LaO3(OMe)3(SALO)6(SALOH)3]

0

6

6 × 107

[34]

[n-PrNH2]3[Mn6TbO3(OMe)3(SALO)6(SALOH)3]

0

2

2 × 105

[34]

[n-PrNH2]3[Mn6DyO3(OMe)3(SALO)6(SALOH)3]

0

1.3

6 × 1011

[34]

[Mn8Tb2O2(OH)2{(py)2CO2}4(teaH)4(CH3COO)6]∙6 CH3CN·2H2O

0

18.97

1.71 × 109

[35]

[MnIII4MnTb6(O)4(OH)4(OMe)2(bemp)2(OAc)10(NO3)4]

0

17.76

4.76 × 108

[36]

[MnIII9MnII2Ho(O)8(OH)(piv)16 (NO3)(CH3CN)]∙2 CH3CN∙0.5C7H16

0

6.0

8.6 × 104

140

1.0

[37]

[Dy2Mn10O8(O2CPh)10(hmp)6(NO3)4]

0

30

6 × 1010

140

1.6

[38]

[Ho2Mn10O8(O2CPh)10(hmp)6(NO3)4]

0

41

3 × 1012

[38]

[Tb2Mn10O8(O2CPh)10(hmp)6(NO3)4]

0

42

[38]

[Dy4Mn8O8(O2CPh)16(dmhmp)4]

0

17.2

9 (2) × 108

140

1.6

[39]

[Mn6Dy2(μ3-OH)4(μ4-O)(Ac)4(H2O)2(R-L6)6]∙NO3∙OH

0

14.85

2.38 × 107

[39]

[Mn12GdO9(O2CPh)18(O2CH)(NO3)(HO2CPh)]

0

16.0

2.4 × 1012

8

0.7

[40]

[MnIII9MnII2Gd2(μ4-O)7(μ3-O)(μ3-OH)2(piv)10.6 (O2CC4H3O)6.4(NO3)2(OH2)]3∙13CH3CN∙3H2O

0

18.4

2 × 1012

[41]

[MnIII9MnII2Gd2(O)8(OH)2(piv)10.6(fca)6.4(NO3)2(H2O)]∙13CH3CN∙H2O

0

18.4

2 × 1012

[42]

[Mn11Dy4O8(OH)6(OMe)2(O2CPh)16(NO3)5(H2O)3]∙15 MeCN

0

9.3

4 × 108

35

1

[43]

[Mn10Dy6(R/S-L8)6(L9)2(Ac)12(μ5-O)(μ4-O)6(μ3-OH)6 (μ2-H2O)2][Mn6Dy2(R/S-L8)6(L9)2(Ac)2(μ4-O)2(μ3-OH)2 (H2O)2]

0

25.1

2.0 × 108

[44]

[Dy10MnIII4MnII2O4(OH)12(OAc)16(L10)4(HL10)2(EtOH)2

0

11.38

1.99 × 107

[45]

[Dy6Mn12O7(OH)10(OAc)14(mpea)8]∙20H2O∙4MeOH (12)

0

35.1 (5)

1.00 × 108

[46]

续表

[Dy6Mn12O9(OH)8(OAc)10(mpea)8(mp)2(MeOH)2(H2O)2] (13)

0

18.2 (5)

3.02 × 108

[46]

[Tb6Mn12O7(OH)10(OAc)14(mpea)8]∙13H2O∙7MeOH

0

36.6 (7)

4.52 × 1010

[47]

[Tb6Mn12O9(OH)8(OAc)10(mpea)8(mp)2(MeOH)2(H2O)2]

0

19.6 (14)

2.04 × 108

[47]

[MnIII12MnII6Dy(μ4-O)8(μ3-Cl)6.5(μ3-N3)1.5(HL2)12(MeOH)6]

2

0.5

[48]

[Mn21DyO20(OH)2(ButCO2)20(HCO2)4(NO3)3(H2O)7] (14)

0

74

2.0 × 1012

70

3

[49]

[Mn21GdO20(OH)2(ButCO2)20(HCO2)4(NO3)3(H2O)7]

0

27.6

5.0 × 1012

[49]

[Mn26Dy6O16(OH)12(O2CCHMe2)42] (15)

0

46

[50]

saO = Salicylaldoxime; Hmp = 2-hydroxy-5-methyl-isophthalaldehyde; H2mpea = 2-hydroxy-3-((2-hydroxy-ethylimino) methyl)-5-methylbenzaldehyde); H3L1 = 2,2’-(2-hydroxy-3-methoxy-5-methylbenzylazanediyl)diethanol; C7H6O2 = salicylic aldehyde; TBA = Tetrabutylammonium; H3tea = triethanolamine; HQCl = 5-chloro-8-hydroxyquinoline; O2CPh = benzoic acid; H3tmp = Trimethylol; H2mdea = N-methyldiethanolamine; HPiv = pivalic acid; H2bdea = N-Butyldiethanolamine; H3L2 = 2,6-bis-(hydroxymethyl)-4-methylphenol; H3bemp = 2,6-bis[N-(2-hydroxyethyl)iminomethyl]-4-methylphenol; C4 = calix[4]arene; nBu-deaH2 = N-nButyldiethanolamine; C4H3OCOOH = 2-furan-carboxylic acid; H4edte = N,N,N’,N’-tetrakis (2-hydroxyethyl)ethylenediamine; H4L3 = (E)-2,2’-(2-hydroxy-3-((2-hydroxyphenylimino)methyl)-5-methylbenzylazanediyl) -diethanol; H2mosao = 3-Methyloxysalicylaldoxime; H2SALO = 3,5-di-tert-butylsalicylic acid; H3L4 = 1,3,5-tris(2-di(2’-pyridyl)hydroxymethylphenyl) benzene; HOTf = trifluoromethanesulfonate; Hhmp = 2-(hydroxymethyl)pyridine; (py)2CO2H2 = the gem-diol form of di-2-pyridyl ketone; H2L5 = (E)-2-ethoxy-6-(((2-hydroxyphenyl)imino)methyl)phenol; Hdpm = 2,2,6,6-tetramethyl-3,5-heptanodione; fcaH = 2-furan-carboxylic acid; R-H2L6 = (R)-2-[(2-hydroxy-1-phenylethylimino)methyl]-5-methoxy-phenol; dmhmpH = 2-(pyridine-2-yl)propan-2-ol; H2opch = (E)-N’-(2-hyborxy-3-methoxybenzylidene)pyrazine-2-carbohydrazide; H2L7 = 2,2’-((pyridin-2-ylmethyl)azanediyl)bis(ethan-1-ol); Ac = acetic acid, H2L8 = (R/S)-2-(((1-hydroxybutan-2-yl)imino)methyl)-5-methoxyphenol; HL9 = 2-hydroxy-4-methoxybenzaldehyde; H2L10 = 4-bromo-2-[(2-hydroxypro- pylimino)methyl]phenol; H4L11 = N,N’,N’’,N’’’-tetra(2-hydroxy-3-methoxy-5-methylbenzyl)-1,4,7,10-tetraazacyclododecane; L12 = ditopic carbohydrazone ligand.

2015年,唐金魁等[11]报道了一类三核异金属配合物Ln2Mn(C7H5O2)8 (Ln = Tb (1),Dy (2),C7H6O2 = 水杨醛)。这些配合物是第一个仅以MnII为中心的线性Mn-Ln SMM的实例。这3个金属离子通过6个水杨醛配体上的6个μ2-酚酸氧原子连接,形成[Dy2Mn(μ2-O)6]2+核(图1(a))。交流磁化率测试表明,配合物12在外加磁场为零的情况下,其实部和虚部交流磁化率均表现出较强的温度和频率依赖性。对于12利用广义Debye模型拟合得出2α参数值相对较高,2表现出双重弛豫途径,这可能是由于DyIII离子的单离子行为和DyIII与MnII离子之间的弱耦合。在较高温度下,单个DyIII离子主导的弛豫过程,有效能垒为92.4 (2) K,弛豫时间为5.37 × 108 s。在较低温度下,由于Dy和Mn之间存在弱的耦合作用,随着温度的降低,χ″(ν)的最大值逐渐向低频偏移,证实了配合物12在零直流场下存在慢磁弛豫行为,其能量势垒为15.4 (4) K (图1(b))。

Figure 1. The molecular structure (a) and ln(τ) versus T1 plot under zero-dc field (b) for 2. The solid line is fitted with the Arrhenius law

1. 2的分子结构(a)和磁化弛豫时间ln(τ)相对于T1的图(b)。实线是通过拟合Arrhenius定律得到

2017年Powell等[12]合成了一种含有叠氮化物的配合物TBA2[Mn4Dy2(teaH)4(N3)12] (3,TBA = 四丁基铵,teaH3 = 三乙醇胺)。该配合物由一个中心对称的重阴离子簇[MnIII4Dy2(teaH)4(µ-N3)2(N3)10]2和两个作为电荷平衡的四丁基铵离子组成。在结构上,每个DyIII与两个去质子化的teaH2配体配位,将Dy1与Mn1、Mn1A和Mn2离子连接起来。此外,叠氮化物配体连接Dy1和Mn1A离子。由于阴离子团簇的中心对称性,形成了蝴蝶形状的{Mn2Dy2}内核。其余叠氮化物配体与4个Mn离子配位,使Mn1和Mn2离子分别呈扭曲的八面体构型和四方锥体配位构型,而DyIII则呈现出单帽四方反棱柱配位构型(图2)。配合物3的交流磁化率显示出温度和频率的依赖性行为,没有出现完整的峰值。利用广义德拜公式进行拟合,得到有效能垒为43.8 K,指前因子τ0为1.47 × 1010 s。Cole-Cole图显示在3中存在不止一个弛豫过程,23均不止一个弛豫过程。

Figure 2. The molecular structure of 3

2. 3的分子结构

2022年,Keith S. M.等[13]报道了一系列三核配合物[Ln2Mn(QCl)8] (HQCl = 5-氯-8-喹啉酸酯;Ln = Tb (4);Dy (5);Er。在配合物45和[Er2Mn(QCl)8]中,三个金属离子呈线性排列,两个末端的LnIII离子通过三个羧酸氧原子与中心的Mn离子相连。在8个QCl配体中,两个位于配合物的两端,并且仅与LnIII离子相连。其余6个配体连接LnIII和Mn离子,导致Mn离子形成扭曲的八面体配位环境(图3(a))。配合物45和[Er2Mn(QCl)8]在1.8~10 K范围内进行交流磁化率测试。在零直流场下,5表现出明显的频率依赖信号,并表现出两个弛豫过程。快速弛豫过程归因于与温度无关的QTM。在整个温度范围内,ln τ vs T1数据呈现出接近线性的趋势,因此符合Arrhenius定律,得到5的有效能垒为44.5 K (图3(b))。与配合物5相比,配合物4的能量势垒较低,为20.3 K,而配合物[Er2Mn(QCl)8]没有出现任何虚部信号。

Figure 3. The molecular structure of 4 (a) and plot of ln(τ) vs T1 for 5 (Black dots) (b). The red line is fitted using an Orbach-only mechanism of relaxation

3. 4的分子结构图(a)和5的ln(τ) vs T1曲线(黑点) (b)。红线是用Orbach弛豫机制拟合的

2013年,Chandrasekhar研究组[14]成功合成了一例四核配合物[Mn2Ln2(HL1)4(μ-OAc)2] (NO3)2∙2CH3OH∙3H2O (Ln = Dy (6),Tb (7),H3L1 = 2,2’-(2-羟基-3甲氧基-5-甲基苄基二基)二乙醇)。在LnIII和MnIII之间,有两种不对称取代多齿配体H3L1和醋酸桥桥联;而两个LnIII通过两个配体的氧原子相互连接,形成三个连续的四元环,整体呈梯形的金属骨架(图4(a))。在交流磁化率测试中,67表现出慢磁弛豫行为,67的弛豫现象不仅与Ln3+中心的mJ态的零场分裂有关,而且在一定程度上也受到了Jahn-Teller畸变Mn3+中心磁各向异性的影响。由于Mn-Ln-Ln-Mn主链呈拱型,Ln3+离子的各向异性轴和Mn3+离子的Jahn-Teller轴并非共线取向,降低了有效能垒(图4(b))。

Figure 4. The molecular structure (a) and Magnetization relaxation time ln(τ) vs T1 plot (b) for 7 (red dots). The blue solid line is fitting curve with the Arrhenius law

4. 7 (红点)的分子结构图(a)和ln(τ) vs T1图(b)。蓝色实线是通过Arrhenius定律拟合得到

2011年,Stefanie Dehnen等[23]成功合成了含有{MnIII6O3Ln2} (Ln = La (8), Tb(9))单元的Mn-Ln SMM。在该配合物中,6个MnIII离子通过水杨醛肟配体和μ4-O桥相互连接,形成近似平面结构。此外,这6个MnIII离子围绕中央Ln-Ln轴以循环方式排列(图5(a))。与类似的{MnIII6O3Ln2}核配合物相比[36],配体配位模式在89内的明显改变导致6个MnIII离子的Jahn-Teller轴的非共线取向。因此,89表现出近乎完美的C3对称结构,有效地减弱了量子隧穿的影响。值得注意的是,由于TbIII离子固有的磁性各向异性,9的有效能垒达到了103 K (图5(b)) [13]

Figure 5. The molecular structure (a) and magnetization relaxation time τ vs T1 plot for 8 (violet dots) and 9 (red dots) in zero dc-field (b). The blue solid line is fitting curve with the Arrhenius law

5. 配合物89的分子结构(a)和磁化弛豫时间τ vs T1图(b)。紫点:8;红点:9。蓝色实线为通过Arrhenius定律得到的拟合曲线

2011年,Euan K. B. [29]利用水杨醛肟衍生配体(R-saoH2, R = Me, Et)成功地合成了六方棱柱形3d-4f配合物{MnIII6LnIII2} (Ln = Gd (10),La,Tb (11)。配合物10和{MnIII6LaIII2}的金属骨架由6个MnIII组成的非平面六边形结构,顶部和底部各有一个LnIII。LnIII通过3个μ4-O2和4个μ3-MeO桥联到MnIII上,形成[LnIII2MnIII6O3(MeO)4]14+单元。此外,配体Et-sao2采用两种不同的配位模式。其中一种模式通过μ:η1:η1:η1的方式连接到[Mn6]循环结构中的MnIII,另一种是通过μ3:η1:η1:η2的方式连接MnIII和LnIII (图6(a))。在与配合物10和{MnIII6LaIII2}类似的配合物11中,Et-sao2配体被Me-sao2取代。磁化率测试结果表明,10和{MnIII6LaIII2}表现出SMM行为。配合物10的有效能垒为24 K,τ0值为1.7 × 109 s。相反,与配合物10相比,配合物11的能量势垒明显增强,达到46.3 K (图6(b))。

Figure 6. The molecular structure of 10 (a) and plot of the out-of-phase (χM'') ac susceptibility for 10 (top) and 11 (bottom) measured at the indicated temperatures and frequencies (b)

6. 10的分子结构(a)和10 (上)和11 (下)在指定温度和频率下测量的虚部(χM'')交流磁化率图(b)

Figure 7. Magnetization relaxation time ln(τ) vs T1 plot for 12 (a) and 13 (b)

7. 12 (a)和13 (b)的ln(τ) vs T1

同年,童明良等[46]合成了两种3d-4f配合物,即[Dy6Mn12O7(OH)10(OAc)14(mpea)8]∙20H2O∙4MeOH (12)和[Dy6Mn12O9(OH)8(OAc)10(mpea)8(mp)2(MeOH)2(H2O)2]∙26H2O∙2MeOH (13,Hmp = 2-羟基-5-甲基-二苯二醛;H2mpea = 2-羟基-3-((2-羟乙基)甲基)-5-甲基苯甲醛)。配合物1213的金属骨架由[MnIII8O13]单元组成。这些单元包含一个扭曲的四边形[MnIII4O5]片段,其中[MnIII4O5]的中心氧原子在配合物12中充当μ4-氧桥,连接[MnIII4]单元,而在配合物13中,它充当μ5-O桥,连接[MnIII4]单元和[DyIII3]三聚体的中心DyIII离子(图7)。配合物1213之间最显著的区别在于[DyIII3]单元的朝向。这些[DyIII3]单元在配合物1213中分别几乎平行和垂直。这种差异导致配合物1213中[MnIII4O5]单元的Jahn-Teller轴的取向不同,导致其基态自旋值和慢磁弛豫行为的明显差异。在交流磁化率测量中,这两种配合物都表现出单分子磁性行为。值得注意的是,配合物12具有更高的自旋和共线的局部各向异性轴,表现出更高的能量势垒和阻塞温度。

2010年,Christou课题组[49]合成了一种多核配合物{Mn21Dy}(14),主要由[DyMnIV3O4]7+立方体构成。立方体的上下部分分别与一个由7个MnII离子组成的非共面环和另一个由8个MnIII离子组成的非共面环相连。此外,三个MnIII离子通过O2桥接(图8(a))。值得注意的是,在这个配合物中,在Dy和Mn之间存在大量的O2,促进了有效的磁交换相互作用,得到有效能垒为74 K (图8(b))。与其他报道的多核Mn-Ln-SMMs相比,14表现出优异的磁性能。

Figure 8. The molecular structure (a) and plots of τ vs T1 (b) for complex 14

8. 配合物14的分子结构(a)和τ vs T1图(b)

Figure 9. The molecular structure of 15

9. 15的分子结构

2019年,Svetlana G. B.等[50]成功合成了一例混价杂金属多核配合物,其分子式为[Mn26Dy6O16(OH)12 (O2CCHMe2)42] (15)。该配合物具有[MnII10MnIII16DyIII6]86+核,由14个μ4-O,2个μ3-O和12个OH连接金属离子构成。中心部分包括一个[MnIII4O4]单元,而另外的12个MnIII离子在其周围形成两个外围六角形环。此外,核心被42个异丁酸基团配位(图9)。配合物内的MnII和MnIII离子呈畸变八面体构型,而DyIII离子呈八配位的三角十二面体构型或九配位的单帽四方反棱柱构型。值得注意的是,15χmT值随着温度的降低而降低,在30 K以下迅速下降,证明配合物内存在反铁磁相互作用,下降是由于Dy Stark亚能级的热布居减少和磁相互作用。交流磁化率的频率依赖性揭示了液氦温度下的慢磁化动力学,有效能垒为46 K。

3. 结论

MnIII离子含有的未成对d电子数较多,同时有多种不同的价态可以在同一配合物中形成两种磁性中心,零场分裂效应也较强,适合于形成高自旋分子,从而趋向获得比较强的磁性分子。因此含有锰离子的配合物由于其自身优越性,是3d-4f配合物中研究最多,数量最多的。Mn-Ln配合物是3d-4f异金属配合物中研究较早,原因在于磁各向异性较大的稀土离子引入到过渡金属配合物中可提高单分子磁体的能垒及其阻塞温度。锰–稀土配合物中至少有一个磁各向异性较大的三价锰离子,合成出的主要有环状八核,线形三核,铃形十三核等配合物。人们研究Mn-Dy单分子磁体发现尽管大多数分子都是Mn-Dy异金属配合物表现出较好的单分子磁体性质,但也有少数配合物的能垒比Dy的要高。这可能与Mn金属的3d轨道与Ln的4f轨道发生一定的磁耦合作用而使分子轨道能级发生变化有关。

综合以上研究进展,本文综述了不同结构类型且单分子磁体性能优异的Mn-Ln单分子磁体。随着科学技术的的不断进步,期望进一步设计合成新型配体,能够定向设计合成和优化Mn-Ln单分子磁体的结构,增强其磁学性能,为稀土–过渡异金属单分子磁体的应用和发展做出了重要贡献。

基金项目

江苏省研究生科研与实践创新计划项目(KYCX24_3546、SJCX24_1995、SJCX24_1992)资助,南通大学大学生创新创业训练计划项目(2024116),南通大学大型仪器开放基金资助(KFJN2471、KFJN2437),感谢南通大学分析测试中心。

NOTES

*通讯作者。

参考文献

[1] Chen, L., Wang, J., Liu, Y., Song, Y., Chen, X., Zhang, Y., et al. (2014) Slow Magnetic Relaxation in Mononuclear Octahedral Manganese(III) Complexes with Dibenzoylmethanide Ligands. European Journal of Inorganic Chemistry, 2015, 271-278.
https://doi.org/10.1002/ejic.201402964
[2] Liddle, S.T. and van Slageren, J. (2015) Improving f-Element Single Molecule Magnets. Chemical Society Reviews, 44, 6655-6669.
https://doi.org/10.1039/c5cs00222b
[3] Boudalis, A.K., Sanakis, Y., Clemente‐Juan, J.M., Donnadieu, B., Nastopoulos, V., Mari, A., et al. (2008) A Family of Enneanuclear Iron(II) Single‐Molecule Magnets. ChemistryA European Journal, 14, 2514-2526.
https://doi.org/10.1002/chem.200701487
[4] Xiao, H.M. and Shi, L.C. (2012) The Application Research of Single-Molecule Magnets and Molecular Spin Electronics Materials. Advanced Materials Research, 485, 522-525.
https://doi.org/10.4028/www.scientific.net/amr.485.522
[5] Chakraborty, A., Goura, J., Kalita, P., Swain, A., Rajaraman, G. and Chandrasekhar, V. (2018) Heterometallic 3d-4f Single Molecule Magnets Containing Diamagnetic Metal Ions. Dalton Transactions, 47, 8841-8864.
https://doi.org/10.1039/c8dt01883a
[6] Rosado Piquer, L. and Sañudo, E.C. (2015) Heterometallic 3d-4f Single-Molecule Magnets. Dalton Transactions, 44, 8771-8780.
https://doi.org/10.1039/c5dt00549c
[7] Jing, Y., Wang, J., Kong, M., Wang, G., Zhang, Y. and Song, Y. (2023) Detailed Magnetic Properties and Theoretical Calculation in Ferromagnetic Coupling DyIII-MII 3d-4f Complexes Based on a 1,4,7,10-Tetraazacyclododecane Derivative. Inorganica Chimica Acta, 546, Article 121301.
https://doi.org/10.1016/j.ica.2022.121301
[8] Tian, H., Ungur, L., Zhao, L., Ding, S., Tang, J. and Chibotaru, L.F. (2018) Exchange Interactions Switch Tunneling: A Comparative Experimental and Theoretical Study on Relaxation Dynamics by Targeted Metal Ion Replacement. ChemistryA European Journal, 24, 9928-9939.
https://doi.org/10.1002/chem.201801523
[9] Escobar, L.B.L., Guedes, G.P., Soriano, S., Cassaro, R.A.A., Marbey, J., Hill, S., et al. (2017) Synthesis, Crystal Structures, and EPR Studies of First MnIIILnIII Hetero-Binuclear Complexes. Inorganic Chemistry, 57, 326-334.
https://doi.org/10.1021/acs.inorgchem.7b02575
[10] Wang, J., Lu, G., Liu, Y., Wu, S., Huang, G., Liu, J., et al. (2019) Building Block and Directional Bonding Approaches for the Synthesis of {DyMn4}n(n=2, 3) Metallacrown Assemblies. Crystal Growth & Design, 19, 1896-1902.
https://doi.org/10.1021/acs.cgd.8b01879
[11] Li, X., Min, F., Wang, C., Lin, S., Liu, Z. and Tang, J. (2015) [LnIII-MnII-LnIII] Heterometallic Compounds: Rare Linear Smms with Divalent Manganese Ions. Dalton Transactions, 44, 3430-3438.
https://doi.org/10.1039/c4dt03713h
[12] Schmidt, S.F.M., Merkel, M.P., Kostakis, G.E., Buth, G., Anson, C.E. and Powell, A.K. (2017) SMM Behaviour and Magnetocaloric Effect in Heterometallic 3d-4f Coordination Clusters with High Azide: Metal Ratios. Dalton Transactions, 46, 15661-15665.
https://doi.org/10.1039/c7dt03149a
[13] Ghazali, N.F., Vignesh, K.R., Phonsri, W., Murray, K.S., Junk, P.C., Deacon, G.B., et al. (2022) Efficient Synthetic Route to Heterobimetallic Trinuclear Complexes [Ln-Mn-Ln] and Their Single Molecule Magnetic Properties. Dalton Transactions, 51, 18502-18513.
https://doi.org/10.1039/d2dt02616c
[14] Chandrasekhar, V., Bag, P., Speldrich, M., van Leusen, J. and Kögerler, P. (2013) Synthesis, Structure, and Magnetic Properties of a New Family of Tetra-Nuclear {Mn2IIILn2}(Ln=Dy, Gd, Tb, Ho) Clusters with an Arch-Type Topology: Single-Molecule Magnetism Behavior in the Dysprosium and Terbium Analogues. Inorganic Chemistry, 52, 5035-5044.
https://doi.org/10.1021/ic302742u
[15] Akhtar, M.N., Lan, Y., Mereacre, V., Clérac, R., Anson, C.E. and Powell, A.K. (2009) Synthesis, Structures and Magnetic Properties of Heterometallic Tetranuclear Complexes. Polyhedron, 28, 1698-1703.
https://doi.org/10.1016/j.poly.2008.10.062
[16] Sun, L., Chen, H., Ma, C. and Chen, C. (2016) A New Family of Interdimer [MnII2 LnIII2]2 Clusters: Syntheses, Structures, and Magnetic Properties. Inorganic Chemistry Communications, 70, 132-135.
https://doi.org/10.1016/j.inoche.2016.06.005
[17] Li, J., Wei, R., Pu, T., Cao, F., Yang, L., Han, Y., et al. (2017) Tuning Quantum Tunnelling of Magnetization through 3d-4f Magnetic Interactions: An Alternative Approach for Manipulating Single-Molecule Magnetism. Inorganic Chemistry Frontiers, 4, 114-122.
https://doi.org/10.1039/c6qi00407e
[18] Peng, Y., Singh, M.K., Mereacre, V., Anson, C.E., Rajaraman, G. and Powell, A.K. (2019) Mechanism of Magnetisation Relaxation in {MIII2DyIII2} (M=Cr, Mn, Fe, Al) “Butterfly” Complexes: How Important Are the Transition Metal Ions Here? Chemical Science, 10, 5528-5538.
https://doi.org/10.1039/c8sc05362f
[19] Moreno Pineda, E., Chilton, N.F., Tuna, F., Winpenny, R.E.P. and McInnes, E.J.L. (2015) Systematic Study of a Family of Butterfly-Like {M2Ln2} Molecular Magnets (M=MgII, MnIII, CoII, NiII, and CuII; Ln=YIII, GdIII, TbIII, DyIII, HoIII, and ErIII). Inorganic Chemistry, 54, 5930-5941.
https://doi.org/10.1021/acs.inorgchem.5b00746
[20] Lin, P., Tsui, E.Y., Habib, F., Murugesu, M. and Agapie, T. (2016) Effect of the Mn Oxidation State on Single-Molecule-Magnet Properties: MnIII vs MnIV in Biologically Inspired DyMn3O4 Cubanes. Inorganic Chemistry, 55, 6095-6099.
https://doi.org/10.1021/acs.inorgchem.6b00630
[21] Bag, P., Chakraborty, A., Rogez, G. and Chandrasekhar, V. (2014) Pentanuclear Heterometallic {MnIII2Ln3} (Ln=Gd, Dy, Tb, Ho) Assemblies in an Open-Book Type Structural Topology: Appearance of Slow Relaxation of Magnetization in the Dy(III) and Ho(III) Analogues. Inorganic Chemistry, 53, 6524-6533.
https://doi.org/10.1021/ic4028833
[22] Wang, H., Chen, Y., Hu, Z., Zhang, K., Zhang, Z., Song, Y., et al. (2020) Modulating the Structural Topologies and Magnetic Relaxation Behaviour of the Mn-Dy Compounds by Using Different Auxiliary Organic Ligands. New Journal of Chemistry, 44, 16302-16310.
https://doi.org/10.1039/d0nj03838e
[23] Hołyńska, M., Premužić, D., Jeon, I., Wernsdorfer, W., Clérac, R. and Dehnen, S. (2011) [MnIII6O3Ln2] Single‐Molecule Magnets: Increasing the Energy Barrier above 100 K. ChemistryA European Journal, 17, 9605-9610.
https://doi.org/10.1002/chem.201101807
[24] Mishra, A., Wernsdorfer, W., Parsons, S., Christou, G. and Brechin, E.K. (2005) The Search for 3d-4f Single-Molecule Magnets: Synthesis, Structure and Magnetic Properties of a [MnIII2DyIII2] Cluster. Chemical Communications, 2005, 2086-2088.
https://doi.org/10.1039/b501508a
[25] Saha, A., Thompson, M., Abboud, K.A., Wernsdorfer, W. and Christou, G. (2011) Family of Double-Cubane Mn4Ln2 (Ln=Gd, Tb, Dy, Ho) and Mn4Y2 Complexes: A New Mn4Tb2 Single-Molecule Magnet. Inorganic Chemistry, 50, 10476-10485.
https://doi.org/10.1021/ic201683p
[26] Akhtar, M.N., Lan, Y., AlDamen, M.A., Zheng, Y., Anson, C.E. and Powell, A.K. (2018) Effect of Ligand Substitution on the SMM Properties of Three Isostructural Families of Double-Cubane Mn4Ln2 Coordination Clusters. Dalton Transactions, 47, 3485-3495.
https://doi.org/10.1039/c7dt04304j
[27] Shakeel, A., Bakhshi, H., Ahmed, T., Watanabe, L., Turnbull, M.M., Al-Harrasi, A., et al. (2023) Linear Mn(II)4Ln(III)2 (Ln=Gd, Dy, Tb) Heterometallic Complexes from a Ditopic Hydrazone Ligand: Slow Magnetic Relaxation in Mn4Dy2 Complex. Journal of Molecular Structure, 1275, 134630.
https://doi.org/10.1016/j.molstruc.2022.134630
[28] Chen, H., Ma, C., Hu, M., Wen, H. and Chen, C. (2014) A Family of Novel Mn3Ln4 Clusters Displaying Single-Molecule Magnet Behavior. Dalton Trans., 43, 16737-16744.
https://doi.org/10.1039/c4dt01816h
[29] Rigaux, G., Inglis, R., Morrison, S., Prescimone, A., Cadiou, C., Evangelisti, M., et al. (2011) Enhancing Ueff in Oxime-Bridged [MnIII6LnIII2] Hexagonal Prisms. Dalton Transactions, 40, 4797-4799.
https://doi.org/10.1039/c1dt10154d
[30] Mereacre, V., Ako, A.M., Clérac, R., Wernsdorfer, W., Hewitt, I.J., Anson, C.E., et al. (2008) Heterometallic [Mn5‐Ln4] Single‐Molecule Magnets with High Anisotropy Barriers. ChemistryA European Journal, 14, 3577-3584.
https://doi.org/10.1002/chem.200800125
[31] Karotsis, G., Kennedy, S., Teat, S.J., Beavers, C.M., Fowler, D.A., Morales, J.J., et al. (2010) [MnIII4LnIII4] Calix[4]Arene Clusters as Enhanced Magnetic Coolers and Molecular Magnets. Journal of the American Chemical Society, 132, 12983-12990.
https://doi.org/10.1021/ja104848m
[32] Li, M., Ako, A.M., Lan, Y., Wernsdorfer, W., Buth, G., Anson, C.E., et al. (2010) New Heterometallic [MnIII4LnIII4] Wheels Incorporating Formate Ligands. Dalton Transactions, 39, 3375.
https://doi.org/10.1039/c000854k
[33] Li, M., Lan, Y., Ako, A.M., Wernsdorfer, W., Anson, C.E., Buth, G., et al. (2010) A Family of 3d-4f Octa-Nuclear [MnIII4LnIII4] Wheels (Ln=Sm, Gd, Tb, Dy, Ho, Er, and Y): Synthesis, Structure, and Magnetism. Inorganic Chemistry, 49, 11587-11594.
https://doi.org/10.1021/ic101754g
[34] Ledezma-Gairaud, M., Grangel, L., Aromí, G., Fujisawa, T., Yamaguchi, A., Sumiyama, A., et al. (2014) From Serendipitous Assembly to Controlled Synthesis of 3d-4f Single-Molecule Magnets. Inorganic Chemistry, 53, 5878-5880.
https://doi.org/10.1021/ic500418e
[35] Wang, H., Yang, F., Long, Q., Huang, Z., Chen, W., Pan, Z., et al. (2016) Two Unprecedented Decanuclear Heterometallic [MnII2MnIII6LnIII2] (Ln=Dy, Tb) Complexes Displaying Relaxation of Magnetization. Dalton Transactions, 45, 18221-18228.
https://doi.org/10.1039/c6dt02945k
[36] Shiga, T., Onuki, T., Matsumoto, T., Nojiri, H., Newton, G.N., Hoshino, N., et al. (2009) Undecanuclear Mixed-Valence 3d-4f Bimetallic Clusters. Chemical Communications, 2009, 3568-3570.
https://doi.org/10.1039/b905480d
[37] Mereacre, V., Lan, Y., Wernsdorfer, W., Anson, C.E. and Powell, A.K. (2012) A Family of Dodecanuclear Mn11Ln Single-Molecule Magnets. Comptes Rendus. Chimie, 15, 639-646.
https://doi.org/10.1016/j.crci.2012.05.015
[38] Bagai, R., Wernsdorfer, W., Abboud, K.A. and Christou, G. (2018) Single-Molecule Magnetism within a Family of [LnIII2MnIII10] Complexes from 2-Hydroxymethylpyridine. Polyhedron, 142, 49-57.
https://doi.org/10.1016/j.poly.2017.12.005
[39] Hu, P., Wang, X., Jiang, C., Yu, F., Li, B., Zhuang, G., et al. (2018) Nanosized Chiral [Mn6Ln2] Clusters Modeled by Enantiomeric Schiff Base Derivatives: Synthesis, Crystal Structures, and Magnetic Properties. Inorganic Chemistry, 57, 8639-8645.
https://doi.org/10.1021/acs.inorgchem.8b01423
[40] Stamatatos, T.C., Teat, S.J., Wernsdorfer, W. and Christou, G. (2008) Enhancing the Quantum Properties of Manganese-Lanthanide Single‐Molecule Magnets: Observation of Quantum Tunneling Steps in the Hysteresis Loops of a {Mn12Gd} Cluster. Angewandte Chemie International Edition, 48, 521-524.
https://doi.org/10.1002/anie.200804286
[41] Mereacre, V., Lan, Y., Clérac, R., Ako, A.M., Wernsdorfer, W., Buth, G., et al. (2011) Contribution of Spin and Anisotropy to Single Molecule Magnet Behavior in a Family of Bell-Shaped Mn11Ln2 Coordination Clusters. Inorganic Chemistry, 50, 12001-12009.
https://doi.org/10.1021/ic201322b
[42] Mereacre, V.M., Ako, A.M., Clérac, R., Wernsdorfer, W., Filoti, G., Bartolomé, J., et al. (2007) A Bell-Shaped Mn11Gd2 Single-Molecule Magnet. Journal of the American Chemical Society, 129, 9248-9249.
https://doi.org/10.1021/ja071073m
[43] Mishra, A., Wernsdorfer, W., Abboud, K.A. and Christou, G. (2004) Initial Observation of Magnetization Hysteresis and Quantum Tunneling in Mixed Manganese-Lanthanide Single-Molecule Magnets. Journal of the American Chemical Society, 126, 15648-15649.
https://doi.org/10.1021/ja0452727
[44] Wang, X., Du, M., Xu, H., Long, L., Kong, X. and Zheng, L. (2021) Cocrystallization of Chiral 3d-4f Clusters {Mn10Ln6} and {Mn6Ln2}. Inorganic Chemistry, 60, 5925-5930.
https://doi.org/10.1021/acs.inorgchem.1c00333
[45] Yu, S., Hu, H., Zou, H., Liu, D., Liang, Y., Liang, F., et al. (2022) Two Heterometallic Nanoclusters [DyIII4NiII8] and [DyIII10MnIII4MnII2]: Structure, Assembly Mechanism, and Magnetic Properties. Inorganic Chemistry, 61, 3655-3663.
https://doi.org/10.1021/acs.inorgchem.1c03768
[46] Liu, J., Guo, F., Meng, Z., Zheng, Y., Leng, J., Tong, M., et al. (2011) Symmetry Related [DyIII6MnIII12] Cores with Different Magnetic Anisotropies. Chemical Science, 2, 1268-1272.
https://doi.org/10.1039/c1sc00166c
[47] Liu, J., Lin, W., Chen, Y., Leng, J., Guo, F. and Tong, M. (2012) Symmetry-Related [LnIII6MnIII12] Clusters toward Single-Molecule Magnets and Cryogenic Magnetic Refrigerants. Inorganic Chemistry, 52, 457-463.
https://doi.org/10.1021/ic302349f
[48] Ako, A.M., Mereacre, V., Clérac, R., Wernsdorfer, W., Hewitt, I.J., Anson, C.E., et al. (2009) A [Mn18Dy] SMM Resulting from the Targeted Replacement of the Central MnIIIn the S = 83/2 [Mn19]-Aggregate with DyIII. Chemical Communications, 2009, 544-546.
https://doi.org/10.1039/b814614d
[49] Papatriantafyllopoulou, C., Wernsdorfer, W., Abboud, K.A. and Christou, G. (2010) Mn21Dy Cluster with a Record Magnetization Reversal Barrier for a Mixed 3d/4f Single-Molecule Magnet. Inorganic Chemistry, 50, 421-423.
https://doi.org/10.1021/ic102378u
[50] Darii, M., Kravtsov, V.C., Krämer, K., Hauser, J., Decurtins, S., Liu, S., et al. (2019) Aggregation of a Giant Bean-Like {Mn26Dy6} Heterometallic Oxo-Hydroxo-Carboxylate Nanosized Cluster from a Hexanuclear {Mn6} Precursor. Crystal Growth & Design, 20, 33-38.
https://doi.org/10.1021/acs.cgd.9b01333