[1]
|
Chen, L., Wang, J., Liu, Y., Song, Y., Chen, X., Zhang, Y., et al. (2014) Slow Magnetic Relaxation in Mononuclear Octahedral Manganese(III) Complexes with Dibenzoylmethanide Ligands. European Journal of Inorganic Chemistry, 2015, 271-278. https://doi.org/10.1002/ejic.201402964
|
[2]
|
Liddle, S.T. and van Slageren, J. (2015) Improving f-Element Single Molecule Magnets. Chemical Society Reviews, 44, 6655-6669. https://doi.org/10.1039/c5cs00222b
|
[3]
|
Boudalis, A.K., Sanakis, Y., Clemente‐Juan, J.M., Donnadieu, B., Nastopoulos, V., Mari, A., et al. (2008) A Family of Enneanuclear Iron(II) Single‐Molecule Magnets. Chemistry—A European Journal, 14, 2514-2526. https://doi.org/10.1002/chem.200701487
|
[4]
|
Xiao, H.M. and Shi, L.C. (2012) The Application Research of Single-Molecule Magnets and Molecular Spin Electronics Materials. Advanced Materials Research, 485, 522-525. https://doi.org/10.4028/www.scientific.net/amr.485.522
|
[5]
|
Chakraborty, A., Goura, J., Kalita, P., Swain, A., Rajaraman, G. and Chandrasekhar, V. (2018) Heterometallic 3d-4f Single Molecule Magnets Containing Diamagnetic Metal Ions. Dalton Transactions, 47, 8841-8864. https://doi.org/10.1039/c8dt01883a
|
[6]
|
Rosado Piquer, L. and Sañudo, E.C. (2015) Heterometallic 3d-4f Single-Molecule Magnets. Dalton Transactions, 44, 8771-8780. https://doi.org/10.1039/c5dt00549c
|
[7]
|
Jing, Y., Wang, J., Kong, M., Wang, G., Zhang, Y. and Song, Y. (2023) Detailed Magnetic Properties and Theoretical Calculation in Ferromagnetic Coupling DyIII-MII 3d-4f Complexes Based on a 1,4,7,10-Tetraazacyclododecane Derivative. Inorganica Chimica Acta, 546, Article 121301. https://doi.org/10.1016/j.ica.2022.121301
|
[8]
|
Tian, H., Ungur, L., Zhao, L., Ding, S., Tang, J. and Chibotaru, L.F. (2018) Exchange Interactions Switch Tunneling: A Comparative Experimental and Theoretical Study on Relaxation Dynamics by Targeted Metal Ion Replacement. Chemistry—A European Journal, 24, 9928-9939. https://doi.org/10.1002/chem.201801523
|
[9]
|
Escobar, L.B.L., Guedes, G.P., Soriano, S., Cassaro, R.A.A., Marbey, J., Hill, S., et al. (2017) Synthesis, Crystal Structures, and EPR Studies of First MnIIILnIII Hetero-Binuclear Complexes. Inorganic Chemistry, 57, 326-334. https://doi.org/10.1021/acs.inorgchem.7b02575
|
[10]
|
Wang, J., Lu, G., Liu, Y., Wu, S., Huang, G., Liu, J., et al. (2019) Building Block and Directional Bonding Approaches for the Synthesis of {DyMn4}n(n=2, 3) Metallacrown Assemblies. Crystal Growth & Design, 19, 1896-1902. https://doi.org/10.1021/acs.cgd.8b01879
|
[11]
|
Li, X., Min, F., Wang, C., Lin, S., Liu, Z. and Tang, J. (2015) [LnIII-MnII-LnIII] Heterometallic Compounds: Rare Linear Smms with Divalent Manganese Ions. Dalton Transactions, 44, 3430-3438. https://doi.org/10.1039/c4dt03713h
|
[12]
|
Schmidt, S.F.M., Merkel, M.P., Kostakis, G.E., Buth, G., Anson, C.E. and Powell, A.K. (2017) SMM Behaviour and Magnetocaloric Effect in Heterometallic 3d-4f Coordination Clusters with High Azide: Metal Ratios. Dalton Transactions, 46, 15661-15665. https://doi.org/10.1039/c7dt03149a
|
[13]
|
Ghazali, N.F., Vignesh, K.R., Phonsri, W., Murray, K.S., Junk, P.C., Deacon, G.B., et al. (2022) Efficient Synthetic Route to Heterobimetallic Trinuclear Complexes [Ln-Mn-Ln] and Their Single Molecule Magnetic Properties. Dalton Transactions, 51, 18502-18513. https://doi.org/10.1039/d2dt02616c
|
[14]
|
Chandrasekhar, V., Bag, P., Speldrich, M., van Leusen, J. and Kögerler, P. (2013) Synthesis, Structure, and Magnetic Properties of a New Family of Tetra-Nuclear {Mn2IIILn2}(Ln=Dy, Gd, Tb, Ho) Clusters with an Arch-Type Topology: Single-Molecule Magnetism Behavior in the Dysprosium and Terbium Analogues. Inorganic Chemistry, 52, 5035-5044. https://doi.org/10.1021/ic302742u
|
[15]
|
Akhtar, M.N., Lan, Y., Mereacre, V., Clérac, R., Anson, C.E. and Powell, A.K. (2009) Synthesis, Structures and Magnetic Properties of Heterometallic Tetranuclear Complexes. Polyhedron, 28, 1698-1703. https://doi.org/10.1016/j.poly.2008.10.062
|
[16]
|
Sun, L., Chen, H., Ma, C. and Chen, C. (2016) A New Family of Interdimer [MnII2 LnIII2]2 Clusters: Syntheses, Structures, and Magnetic Properties. Inorganic Chemistry Communications, 70, 132-135. https://doi.org/10.1016/j.inoche.2016.06.005
|
[17]
|
Li, J., Wei, R., Pu, T., Cao, F., Yang, L., Han, Y., et al. (2017) Tuning Quantum Tunnelling of Magnetization through 3d-4f Magnetic Interactions: An Alternative Approach for Manipulating Single-Molecule Magnetism. Inorganic Chemistry Frontiers, 4, 114-122. https://doi.org/10.1039/c6qi00407e
|
[18]
|
Peng, Y., Singh, M.K., Mereacre, V., Anson, C.E., Rajaraman, G. and Powell, A.K. (2019) Mechanism of Magnetisation Relaxation in {MIII2DyIII2} (M=Cr, Mn, Fe, Al) “Butterfly” Complexes: How Important Are the Transition Metal Ions Here? Chemical Science, 10, 5528-5538. https://doi.org/10.1039/c8sc05362f
|
[19]
|
Moreno Pineda, E., Chilton, N.F., Tuna, F., Winpenny, R.E.P. and McInnes, E.J.L. (2015) Systematic Study of a Family of Butterfly-Like {M2Ln2} Molecular Magnets (M=MgII, MnIII, CoII, NiII, and CuII; Ln=YIII, GdIII, TbIII, DyIII, HoIII, and ErIII). Inorganic Chemistry, 54, 5930-5941. https://doi.org/10.1021/acs.inorgchem.5b00746
|
[20]
|
Lin, P., Tsui, E.Y., Habib, F., Murugesu, M. and Agapie, T. (2016) Effect of the Mn Oxidation State on Single-Molecule-Magnet Properties: MnIII vs MnIV in Biologically Inspired DyMn3O4 Cubanes. Inorganic Chemistry, 55, 6095-6099. https://doi.org/10.1021/acs.inorgchem.6b00630
|
[21]
|
Bag, P., Chakraborty, A., Rogez, G. and Chandrasekhar, V. (2014) Pentanuclear Heterometallic {MnIII2Ln3} (Ln=Gd, Dy, Tb, Ho) Assemblies in an Open-Book Type Structural Topology: Appearance of Slow Relaxation of Magnetization in the Dy(III) and Ho(III) Analogues. Inorganic Chemistry, 53, 6524-6533. https://doi.org/10.1021/ic4028833
|
[22]
|
Wang, H., Chen, Y., Hu, Z., Zhang, K., Zhang, Z., Song, Y., et al. (2020) Modulating the Structural Topologies and Magnetic Relaxation Behaviour of the Mn-Dy Compounds by Using Different Auxiliary Organic Ligands. New Journal of Chemistry, 44, 16302-16310. https://doi.org/10.1039/d0nj03838e
|
[23]
|
Hołyńska, M., Premužić, D., Jeon, I., Wernsdorfer, W., Clérac, R. and Dehnen, S. (2011) [MnIII6O3Ln2] Single‐Molecule Magnets: Increasing the Energy Barrier above 100 K. Chemistry—A European Journal, 17, 9605-9610. https://doi.org/10.1002/chem.201101807
|
[24]
|
Mishra, A., Wernsdorfer, W., Parsons, S., Christou, G. and Brechin, E.K. (2005) The Search for 3d-4f Single-Molecule Magnets: Synthesis, Structure and Magnetic Properties of a [MnIII2DyIII2] Cluster. Chemical Communications, 2005, 2086-2088. https://doi.org/10.1039/b501508a
|
[25]
|
Saha, A., Thompson, M., Abboud, K.A., Wernsdorfer, W. and Christou, G. (2011) Family of Double-Cubane Mn4Ln2 (Ln=Gd, Tb, Dy, Ho) and Mn4Y2 Complexes: A New Mn4Tb2 Single-Molecule Magnet. Inorganic Chemistry, 50, 10476-10485. https://doi.org/10.1021/ic201683p
|
[26]
|
Akhtar, M.N., Lan, Y., AlDamen, M.A., Zheng, Y., Anson, C.E. and Powell, A.K. (2018) Effect of Ligand Substitution on the SMM Properties of Three Isostructural Families of Double-Cubane Mn4Ln2 Coordination Clusters. Dalton Transactions, 47, 3485-3495. https://doi.org/10.1039/c7dt04304j
|
[27]
|
Shakeel, A., Bakhshi, H., Ahmed, T., Watanabe, L., Turnbull, M.M., Al-Harrasi, A., et al. (2023) Linear Mn(II)4Ln(III)2 (Ln=Gd, Dy, Tb) Heterometallic Complexes from a Ditopic Hydrazone Ligand: Slow Magnetic Relaxation in Mn4Dy2 Complex. Journal of Molecular Structure, 1275, 134630. https://doi.org/10.1016/j.molstruc.2022.134630
|
[28]
|
Chen, H., Ma, C., Hu, M., Wen, H. and Chen, C. (2014) A Family of Novel Mn3Ln4 Clusters Displaying Single-Molecule Magnet Behavior. Dalton Trans., 43, 16737-16744. https://doi.org/10.1039/c4dt01816h
|
[29]
|
Rigaux, G., Inglis, R., Morrison, S., Prescimone, A., Cadiou, C., Evangelisti, M., et al. (2011) Enhancing Ueff in Oxime-Bridged [MnIII6LnIII2] Hexagonal Prisms. Dalton Transactions, 40, 4797-4799. https://doi.org/10.1039/c1dt10154d
|
[30]
|
Mereacre, V., Ako, A.M., Clérac, R., Wernsdorfer, W., Hewitt, I.J., Anson, C.E., et al. (2008) Heterometallic [Mn5‐Ln4] Single‐Molecule Magnets with High Anisotropy Barriers. Chemistry—A European Journal, 14, 3577-3584. https://doi.org/10.1002/chem.200800125
|
[31]
|
Karotsis, G., Kennedy, S., Teat, S.J., Beavers, C.M., Fowler, D.A., Morales, J.J., et al. (2010) [MnIII4LnIII4] Calix[4]Arene Clusters as Enhanced Magnetic Coolers and Molecular Magnets. Journal of the American Chemical Society, 132, 12983-12990. https://doi.org/10.1021/ja104848m
|
[32]
|
Li, M., Ako, A.M., Lan, Y., Wernsdorfer, W., Buth, G., Anson, C.E., et al. (2010) New Heterometallic [MnIII4LnIII4] Wheels Incorporating Formate Ligands. Dalton Transactions, 39, 3375. https://doi.org/10.1039/c000854k
|
[33]
|
Li, M., Lan, Y., Ako, A.M., Wernsdorfer, W., Anson, C.E., Buth, G., et al. (2010) A Family of 3d-4f Octa-Nuclear [MnIII4LnIII4] Wheels (Ln=Sm, Gd, Tb, Dy, Ho, Er, and Y): Synthesis, Structure, and Magnetism. Inorganic Chemistry, 49, 11587-11594. https://doi.org/10.1021/ic101754g
|
[34]
|
Ledezma-Gairaud, M., Grangel, L., Aromí, G., Fujisawa, T., Yamaguchi, A., Sumiyama, A., et al. (2014) From Serendipitous Assembly to Controlled Synthesis of 3d-4f Single-Molecule Magnets. Inorganic Chemistry, 53, 5878-5880. https://doi.org/10.1021/ic500418e
|
[35]
|
Wang, H., Yang, F., Long, Q., Huang, Z., Chen, W., Pan, Z., et al. (2016) Two Unprecedented Decanuclear Heterometallic [MnII2MnIII6LnIII2] (Ln=Dy, Tb) Complexes Displaying Relaxation of Magnetization. Dalton Transactions, 45, 18221-18228. https://doi.org/10.1039/c6dt02945k
|
[36]
|
Shiga, T., Onuki, T., Matsumoto, T., Nojiri, H., Newton, G.N., Hoshino, N., et al. (2009) Undecanuclear Mixed-Valence 3d-4f Bimetallic Clusters. Chemical Communications, 2009, 3568-3570. https://doi.org/10.1039/b905480d
|
[37]
|
Mereacre, V., Lan, Y., Wernsdorfer, W., Anson, C.E. and Powell, A.K. (2012) A Family of Dodecanuclear Mn11Ln Single-Molecule Magnets. Comptes Rendus. Chimie, 15, 639-646. https://doi.org/10.1016/j.crci.2012.05.015
|
[38]
|
Bagai, R., Wernsdorfer, W., Abboud, K.A. and Christou, G. (2018) Single-Molecule Magnetism within a Family of [LnIII2MnIII10] Complexes from 2-Hydroxymethylpyridine. Polyhedron, 142, 49-57. https://doi.org/10.1016/j.poly.2017.12.005
|
[39]
|
Hu, P., Wang, X., Jiang, C., Yu, F., Li, B., Zhuang, G., et al. (2018) Nanosized Chiral [Mn6Ln2] Clusters Modeled by Enantiomeric Schiff Base Derivatives: Synthesis, Crystal Structures, and Magnetic Properties. Inorganic Chemistry, 57, 8639-8645. https://doi.org/10.1021/acs.inorgchem.8b01423
|
[40]
|
Stamatatos, T.C., Teat, S.J., Wernsdorfer, W. and Christou, G. (2008) Enhancing the Quantum Properties of Manganese-Lanthanide Single‐Molecule Magnets: Observation of Quantum Tunneling Steps in the Hysteresis Loops of a {Mn12Gd} Cluster. Angewandte Chemie International Edition, 48, 521-524. https://doi.org/10.1002/anie.200804286
|
[41]
|
Mereacre, V., Lan, Y., Clérac, R., Ako, A.M., Wernsdorfer, W., Buth, G., et al. (2011) Contribution of Spin and Anisotropy to Single Molecule Magnet Behavior in a Family of Bell-Shaped Mn11Ln2 Coordination Clusters. Inorganic Chemistry, 50, 12001-12009. https://doi.org/10.1021/ic201322b
|
[42]
|
Mereacre, V.M., Ako, A.M., Clérac, R., Wernsdorfer, W., Filoti, G., Bartolomé, J., et al. (2007) A Bell-Shaped Mn11Gd2 Single-Molecule Magnet. Journal of the American Chemical Society, 129, 9248-9249. https://doi.org/10.1021/ja071073m
|
[43]
|
Mishra, A., Wernsdorfer, W., Abboud, K.A. and Christou, G. (2004) Initial Observation of Magnetization Hysteresis and Quantum Tunneling in Mixed Manganese-Lanthanide Single-Molecule Magnets. Journal of the American Chemical Society, 126, 15648-15649. https://doi.org/10.1021/ja0452727
|
[44]
|
Wang, X., Du, M., Xu, H., Long, L., Kong, X. and Zheng, L. (2021) Cocrystallization of Chiral 3d-4f Clusters {Mn10Ln6} and {Mn6Ln2}. Inorganic Chemistry, 60, 5925-5930. https://doi.org/10.1021/acs.inorgchem.1c00333
|
[45]
|
Yu, S., Hu, H., Zou, H., Liu, D., Liang, Y., Liang, F., et al. (2022) Two Heterometallic Nanoclusters [DyIII4NiII8] and [DyIII10MnIII4MnII2]: Structure, Assembly Mechanism, and Magnetic Properties. Inorganic Chemistry, 61, 3655-3663. https://doi.org/10.1021/acs.inorgchem.1c03768
|
[46]
|
Liu, J., Guo, F., Meng, Z., Zheng, Y., Leng, J., Tong, M., et al. (2011) Symmetry Related [DyIII6MnIII12] Cores with Different Magnetic Anisotropies. Chemical Science, 2, 1268-1272. https://doi.org/10.1039/c1sc00166c
|
[47]
|
Liu, J., Lin, W., Chen, Y., Leng, J., Guo, F. and Tong, M. (2012) Symmetry-Related [LnIII6MnIII12] Clusters toward Single-Molecule Magnets and Cryogenic Magnetic Refrigerants. Inorganic Chemistry, 52, 457-463. https://doi.org/10.1021/ic302349f
|
[48]
|
Ako, A.M., Mereacre, V., Clérac, R., Wernsdorfer, W., Hewitt, I.J., Anson, C.E., et al. (2009) A [Mn18Dy] SMM Resulting from the Targeted Replacement of the Central MnIIIn the S = 83/2 [Mn19]-Aggregate with DyIII. Chemical Communications, 2009, 544-546. https://doi.org/10.1039/b814614d
|
[49]
|
Papatriantafyllopoulou, C., Wernsdorfer, W., Abboud, K.A. and Christou, G. (2010) Mn21Dy Cluster with a Record Magnetization Reversal Barrier for a Mixed 3d/4f Single-Molecule Magnet. Inorganic Chemistry, 50, 421-423. https://doi.org/10.1021/ic102378u
|
[50]
|
Darii, M., Kravtsov, V.C., Krämer, K., Hauser, J., Decurtins, S., Liu, S., et al. (2019) Aggregation of a Giant Bean-Like {Mn26Dy6} Heterometallic Oxo-Hydroxo-Carboxylate Nanosized Cluster from a Hexanuclear {Mn6} Precursor. Crystal Growth & Design, 20, 33-38. https://doi.org/10.1021/acs.cgd.9b01333
|