铁–稀土单分子磁体的研究进展
Research Progress in Fe-Ln Single Molecule Magnets
DOI: 10.12677/japc.2024.134078, PDF, HTML, XML,    科研立项经费支持
作者: 解梦婷, 徐嘉琦, 梁皓然, 胡翔宇, 王窦尊, 郑 祺, 崔会会, 朱金丽:南通大学化学化工学院,江苏 南通;王 金*:南通大学化学化工学院,江苏 南通;南通市智能与新能源材料及器件重点实验室,江苏 南通
关键词: 铁–稀土单分子磁体结构磁性Fe-Ln Single Molecule Magnets Structure Magnetism
摘要: 在3d-4f单分子磁体(SMMs)中,铁通常以两种氧化态存在:FeII和FeIII。在八面体场中,低自旋FeII缺乏不成对电子,使其具有抗磁性,而高自旋FeII具有四个不成对电子,表现出顺磁性。另一方面,FeIII在配位环境中普遍表现出高自旋行为,比FeII更稳定,可以利用这些特性可以合成许多高性能的Fe-Ln SMMs。因此,本文通过对近年来典型的铁–稀土SMMs进行综述,以期为3d-4f SMMs的发展奠定一定的基础。
Abstract: In 3d-4f single molecule magnets (SMMs), iron is usually present in two oxidation states: FeII and FeIII. In the octahedral field, low spin FeII lacks unpaired electrons, making it diamagnetic, while high spin FeII has four unpaired electrons, showing paramagnetism. Moreover, FeIII generally exhibits high spin behavior in the coordination environment and is more stable than FeII, which can be used to synthesize many high-performance iron-lanthanide (Fe-Ln) SMMs. Therefore, this paper reviews the typical Fe-Ln SMMs in recent years, in order to lay a certain foundation for the development of 3d-4f SMMs.
文章引用:解梦婷, 徐嘉琦, 梁皓然, 胡翔宇, 王窦尊, 郑祺, 崔会会, 朱金丽, 王金. 铁–稀土单分子磁体的研究进展[J]. 物理化学进展, 2024, 13(4): 782-794. https://doi.org/10.12677/japc.2024.134078

1. 引言

近年来,稀土Ln3+离子因其具有强自旋轨道耦合效应和磁各向异性成为构建单分子磁体(SMMs)的理想金属中心[1],材料学家已经构筑了一系列较高性能的单核Ln-SMMs [2] [3]。单分子磁体具有类似于传统块状磁体的磁性[4]

由于稀土离子通常具有较多的末成对电子且离子本身具有很强的磁性各项异性,因此在构筑单分子磁体时具有独特的优势[5]。但由于4f电子之间通常为反铁磁相互作用,而且4f轨道被外层电子轨道屏蔽,金属中心之间的磁交换作用通常很弱,这又在一定程度上阻碍了其发展。结合过渡金属可以有效地增强金属离子间的耦合能力,基本上能解决其4f轨道被外层电子轨道屏蔽导致耦合作用弱的缺点[6]。自从第一个3d-4f单分子异四核的Cu2Tb2簇报道以来[7],3d-4f配合物的研究越来越受到人们的重视。

随着稀土离子构筑3d-4f单分子磁体得到极大的发展,构筑出了大量的3d-4f单分子磁体,其中数量最多的为Mn-Ln和Cu-Ln的簇合物,Fe-Ln配合物的单分子磁体则相对较少[8]。一般来说铁系SMMs都是含有Fe3+的配合物,Fe3+离子为d5电子,弱场高自旋八面体场时,t2g和eg轨道上分别占有一个电子,无Jahn-Teller效应,单离子磁各向异性也比较低,但是八面体结构一定程度的扭曲会使得t2g和eg轨道的能级发生分裂,从而使化合物整体上显示一定的磁各向异性。自从第一个铁单分子磁体Fe8报道以来,大量的不同构型的含铁配合物相继被报道,如轮状或环状结构[9]-[11],以空间多面体或多面体衍生物的形式通过顶点、边或者共面的方式连接起来构成平面盘状和棒状结构等,但是其中出现单分子磁体行为的却并不多,这可能与Fe3+本身的单离子各向异性较小,仅靠分子本身不对称来实现分子的磁各向异性比较困难有关。线性铁配合物[Fe(C(SiMe3)3)2] [12]具有零场慢磁弛豫和磁滞,是具有优异的磁性能的单核过渡金属单分子磁体。

因此,对于含铁配合物的研究还需要进一步深入和拓展。含铁配合物的研究与含锰配合物的研究一样占有重要的地位。在3d-4f SMMs中,铁通常以两种氧化态存在:FeII和FeIII。在八面体场中,低自旋FeII缺乏不成对电子,使其具有抗磁性,而高自旋FeII具有四个不成对电子,表现出顺磁性。另一方面,FeIII在配位环境中普遍表现出高自旋行为,比FeII更稳定。因此,利用这些特性可以合成许多高性能的Fe-Ln SMMs。

2. 铁–稀土单分子磁体的研究进展

目前,已报道的铁–稀土单分子磁体如表1所示,本论文仅选取其中一些例子进行描述,并根据其核数进行分类,以研究其结构与磁性行为之间的关系。

Table 1. The magnetic data of Fe-Ln SMMs

1. 铁–稀土单分子磁体的磁性数据

Complexes

Hdc/kOe

Ueff/K

τ0/s

v/mT/s

TB/K

Ref.

[FeIII(bpca)(µ-bpca)Dy(NO3)4]

1

12.84

7.77 × 108

[13]

[{Dy(hfac)3}2{Fe(bpca)2}]∙CHCl3

1

9.7

8.7 × 108

[14]

[Nd(18-crown-6)(H2O)4][Fe(CN)6]∙2H2O

0.8

30.6

8.1 × 108

[15]

[Dy(4-MMNO)(H2O)5][Fe(CN)6]

0

596 (4)

1.096 × 1011

50

25

[16]

[Dy0.04Y0.96(4-MMNO)2(H2O)5][Fe(CN)6]

0

606 (4)

7.08 × 1012

[16]

[YFe(CN)6(hep)2(H2O)4] (1)

2.5

23

1.3 × 107

[17]

[DyFe(CN)6(hep)2(H2O)4] (2)

2.0

23

9.7 × 108

[17]

(PPh4)[Dy2(bbpen)2{Fe(CN)6}]∙3.5MeCN (3)

2

982 (14)

1.49 × 1012

[18]

[FeIIIDy(valpn)(hfac)2(OAc)Cl]

1

9.72

3.69 × 106

[19]

[FeIIDy(H2L1)(NO3)3](CH3OH)2

0

29.9

7.6 × 1010

[20]

[Fe2Dy(L2)2(H2O)]ClO4∙2H2O (4)

0

459

1.11 × 1010

[21]

[Fe2Dy(PhCO2)3((py)2CO2)((py)2C(OMe)O)2(NO3)Cl]

0

6.7

2.2 × 107

[22]

[Fe2Dy2(mepao)6(mepaoH)2(NCS)4] (7)

0

40 (2)

2.6 × 108

[23]

[Fe2Ho2(OH)2(teaH)2(O2CPh)4(NO3)2]

140

0.3

[24]

[Fe2Dy2(OH)2(teaH)2(O2CPh)6]

140

1.1

[24]

[FeIII3Tb(µ3-O)2(CCl3COO)8(H2O)(THF)3]

0

8

[25]

[FeIII3Dy(µ3-O)2(CCl3COO)8(H2O)(THF)3]

0

9

[25]

[FeIII3Ho(µ3-O)2(CCl3COO)8(H2O)(THF)3]

0

11

[25]

[FeDy3(HBpz3)6(dto)3]

0.8

15

1.5 × 106

[26]

[FeIII2Dy2(µ3-OH)2(teaH)2(O2CPh)6]∙3MeCN

1.5

16.21

1.9 × 106

[27]

[DyFeIII2Dy(µ3-OH)2(pmide)2(p-Me-PhCO2)6]

1

16.2

2.6 × 106

[28]

[Fe2Er2(µ3-OH)2(pmide)2(p-MePhCO2)6]∙2MeCN

1

16.5

2.03 × 107

[29]

[Fe2Dy2(L3)2(teaH)2(Cl)2](NO3)2∙4CH3CN

1

6.9

2.6 × 107

[30]

[Ni2(valpn)2Dy2(DMF)5(H2O)][Fe(1-CH3im)(CN)5]3

0

14.8 (3)

1.4 (9) × 106

[31]

[Fe4Y1.83Dy0.17(µ3-OH)2(mdea)6(SCN)2(NO3)2(H2O)2]

0

27.0 (4)

6.5 (4) × 105

20

5

[32]

[Tb2FeIII3(µ5-O)(L4)2(NO3)4Cl]

0

20.88

1.68 × 106

[33]

[FeIII4Dy2(µ4-O)2(NO3)2(piv)6(Hedte)2] (8)

1.2

30.85

3.7 × 108

[34]

[Fe2Dy4(µ4-O)2(µ3-OH)2.36(µ3-OMe)1.64(O2CCH2CN)10 (MeOH)5(H2O)] (9)

0

34.0

2.0 × 1011

[35]

[FeIII4Tb2(Htea)4(µ-N3)4(N3)3(piv)3] (11)

0

40.0

2.5 × 109

[36]

[FeIII4Dy2(Htea)4(µ-N3)4(N3)3(piv)3] (12)

0

36.9

6.8 × 1010

[36]

[FeIII4Ho2(Htea)4(µ-N3)4(N3)3(piv)3] (13)

0

24.0

8.0 × 1010

[36]

[FeIII4Dy2(µ3-OH)2(mdea)4 (m-NO2C6H4COO)8]

0

7.1

6.4 × 106

[37]

[Fe4Er2(µ3-OH)2(nbdea)4(C6H5COO)8]∙MeCN

0.5

12.8

4.6 × 107

[38]

[Fe4Dy2(µ3-OH)2(nbdea)4(C6H5COO)8]∙MeCN

0

21.4

2.7 × 108

[39]

续表

[Fe4Dy2(OH)2(O2CCHMe2)6(N3)2(bdea)4]

0

13.87

1.1 × 106

[40]

[Fe4Dy2(µ4O)(HL5)3{(py)2CO2}{(py)2C(OH)O} {(py)2C(OCH3)O}(L6)Cl3]

1.5

13.80

8.54 × 107

[41]

[Fe4Dy2{(py)2CO2}4(pdm)2(NO3)2(H2O)2Cl4]

2

22.07

8.44 × 107

[42]

[Fe4Dy2(µ3-OH)2(mdea)6(SCN)2(NO3)2(H2O)2]

0

26.2 (2)

5.9 (1) × 105

20

4

[42]

(pipH)3[Fe6Dy(shiH)3(shi)6]

0.8

10.4

2.08 × 106

[43]

[Fe4Dy4(teaH)8(N3)8(H2O)]

0

30.5

2.0 × 109

460

6.8

[44]

[FeIII6Dy3(µ7-C2H2O4)(µ4-tea)2(µ3-teaH)4(µ2-N3)2 (N3)6(NO3)] (14)

0

65.1

1.64 × 1012

[45]

[FeIII6Dy3(µ4-O)3(µ3-O)(mdea)5(m-NO2C6H4COO)9]

1

17.1

7.4 × 108

[45]

[Dy3Fe7(µ4-O)2(µ3-OH)2(mdea)7(µ-benzoate)4(N3)6]

0

30.9

1.3 × 107

35

2.0

[46]

[Fe6Tb4(O2CCHMe2)8(N3)2(bdea)10]

0

18.16

5.2 × 108

[47]

[Fe8Dy2(O)4(OH)4(EtO)2(dhbp)4(dhbpH)2(piv)6]

0.6

4.1

4.9 × 105

[48]

[Fe6Dy4(µ4-O)2(µ3-OH)2(mdea)6(dnbz)8(N3)4]

0

19.5 (4)

4.5 (6) × 108

[49]

Na8K2[Fe2Dy2(H2O)4(β-α-FeW9O34)2]

0

43.68

1.4 × 106

[50]

[FeIII7Tb4O4(OH)3(tea)2(Htea)3(Piv)7(H2O)2(NO3)3]

0

18.7

8.6×108

[51]

[FeIII7Dy4O4(OH)3(tea)2(Htea)3(Piv)7(H2O)2(NO3)3]

0

16.9

4.6×107

70

1.1

[51]

[Fe12Sm4(µ4-O)6(µ3-O)4(µ3-OH)4(PhCO2)24]

0

16

2 × 108

0.5

[52]

[Fe4Dy4(L7)8(H2O)4(NO3)4](NO3)4

1.6

25.8

1.6 × 108

[53]

hep = 1-(2-hydroxyethyl)-2-pyrrolidinone; H2bbpen = N,N’-bis(2-hydroxybenzyl)-N,N’-bis(2-picolyl)ethylene diamine; H4edte = N,N,N’,N’-tetrakis-(2-hydroxyethyl)ethylenediamine; C2H6O4 = 1,1,2,2-tetrahydroxyethane; teaH3 = triethanolamine; Hpiv = pivalate anion; L2 = 2,2’,2”-(((nitrilotris(ethane-2,1-diyl))tris(azanediyl))tris(methylene))tris(4-chlorophenol); mepaoH = methyl-2-pyridyl ketone oxime; O2CPh = benzoic acid; NCS = isothiocyanato; Hbpca = bis(2-pyridylcarbonylamine); hfac- = 1,1,1,5,5,5-hexafluoroacetylacetonate; mdeaH2 = N-methyldiethanolamine; THF = tetrahydrofuran; HBpz3 = hydrotris(pyrazolyl)borate; dto2 = dithiooxalato dianion; m-NO2C6H4COOH = m-nitrobenzoic acid; pmideH2 = N-(2-pyridylmethyl)-iminodiethanol; p-Me-PhCO2 = p-toluic acid; n-bdeaH2 = N-n-butyldiethanolamine; pipH = piperidine; H3shi = salicylhydroxamic acid; H4L4 = N,N,N’,N’-tetrakis(2-hydroxyethyl)ethylene diamine; (py)2C(OH)2 = the gem-diol form of di-2-pyridyl ketone; H3L5 = 2-((2- hydroxybenzylidene)amino)propane-1,3-diol; H2L6 = 2-amino-1,3-propanediol; pdmH2 = 2,6-pyridinedimethanol; py = pyridine; H2L3 = N1,N3-bis(3-methoxysalicylidene)diethylenetriamine; dhbpH2 = 6,6’‐dihydroxyl‐2,2’‐bipyridine; Hdnbz = 3,5-dinitrobenzoic acid; 4-MMNO = 4-methylmorpholine N-oxide; AcOH = acetic acid; H2valpn = 1,3-propanediylbis(2-iminomethylene-6-methoxy-phenol); H2L7 = 2-(hydroxyimino)propionic acid (dipyridin-2-ylmethylene)hydrazide; H4L1 = N,N’,N”,N”’-tetra(2-hydroxy-3-methoxy-5-methylbenzyl)-1,4,7,10-tetraazacyclododecane; (py)2 CO 2 2 = the gem-diol form of di-2-pyridyl ketone; (py)2C(OMe)O = the hemiketal form of di-2-pyridyl ketone.

2.1. 线性FeIII-Ln单分子磁体

2015年Powell等人[17]合成了两个氰基桥接的异构3d-4f配合物[LnFe(CN)6(hep)2(H2O)4] (Ln = Y (1), Dy (2), hep = 1-(2-羟乙基)-2-吡啶酮)。LnIII离子的配位环境由1个来自[Fe(CN)6]3的氮原子、2个来自肝配体羰基的氧原子和4个来自水分子的氧原子组成,形成7个配位的微畸变的五边形–双锥体构型。此外,结构中C和N原子与金属离子连接形成的键角接近180˚,在FeIII的八面体配位环境中,畸变最小(图1(a))。在零直流磁场下进行了交流磁化率测量,研究了它们的磁弛豫行为。结果表明,两者均未表现出磁弛豫行为。当施加2.5 kOe的外场时,在2至6 K的温度范围内,1在实部和虚部均显示出明显的频率相关信号。有效能垒为23 K,指前因子τ0为1.3 × 107 s。这种磁弛豫行为可能归因于单个各向异性[FeIII]LS离子,因为YIII离子是抗磁性的,并且中间二聚体Fe-Fe距离长。2在2 kOe的外场下表现出缓慢的磁弛豫行为,有效能垒为23 K,指前因子τ0为9.7 × 108 s,12的有效能垒相同。2中DyIII与FeIII离子之间存在反铁磁耦合,由于2中存在反铁磁相互作用,在外磁场作用下,2表现出交流磁弛豫动力学(图1(b))。

Figure 1. (a) The molecular structure of 1; (b) ln(τ) versus T1 plot for 1 (blue dots) and 2 (violet dots). The solid lines are fitting curve with the Arrhenius law

1. (a) 1的结构图;(b) 1 (蓝点)和2 (紫点)的ln(τ)与T1图。实线为符合Arrhenius定律的拟合曲线

2020年,童明良[18]研究小组采用构建块方法合成了线性三核配合物(PPh4)[Dy2(bbpen)2 {Fe(CN)6}]∙3.5MeCN (3, H2bbpen = N,N’-双(2-羟基苄基)-N,N’-双(2-吡啶基)乙二胺),通过在含氰金属酸盐的Fe单元两端以反式异构方式桥接两个D5h构型的构建单元[Dy(bbpen)NO3] (图2)。在零场下的交流磁化率测量显示了3的温度相关数据,表明其有效能垒为659 K。外加2 kOe的磁场,有效能垒提高到982 K。有趣的是,配合物3的磁滞回线在零场和2 K时保持闭合,表现出蝴蝶状的磁滞行为。这一观察结果表明,3在接近零场时表现出更快的磁弛豫,而在高场时表现出更慢的磁弛豫。这种现象可能是由于顺磁性[Fe(CN)6]3的存在,产生了磁性各向同性的反铁磁性DyIII-[FeIII]LS-DyIII交换基态,加速了配合物的弛豫过程,导致在零场附近的滞回线消失(图3)。低自旋Fe(III)和Dy(III)之间的磁偶极相互作用,在场依赖性的弛豫时间中,3存在最小值,可能是由于施加磁场时铁磁/反铁磁交换态之间的相互作用。

Figure 2. The molecular structure of [Dy(bbpen)NO3] (a) and 3 (b)

2. [Dy(bbpen)NO3] (a)和3 (b)的分子结构

Figure 3. Temperature dependence of the magnetic relaxation time τ under 0 Oe (red) and 2 kOe (blue) shown as τ versus T1 for 3. The solid lines correspond to the Arrhenius law fitting at high temperatures

3. 磁弛豫时间τ在0 Oe (红色)和2 Oe (蓝色)下的温度依赖性显示为τT1的比值。实线对应于高温下的阿伦尼乌斯定律

在普通的Fe-Ln SMMs中,铁离子通常主要是三价的,但一些FeII-Ln SMMs仍然表现出显著的磁性能。2014年,含有顺磁性FeII离子的配合物{Fe2Dy}(4)成功被合成[21]。每个FeII离子与一个有机配体配位,并且存在连接FeII和DyIII离子的苯氧化合物桥。两个苯氧基与DyIII轴向配位,形成DyIIID5h对称配位环境(图4(a))。磁化率测量显示[FeII-DyIII-FeII]部分之间存在铁磁耦合。这种铁磁相互作用与DyIIID5h配位几何相结合,使配合物具有出色的SMM行为。在零磁场下,配合物4在交流磁化率测量中表现出明显的高峰值温度和强频率依赖性。从广义Debye模型中提取的α值在0.07~0.19范围内,表明弛豫时间的分布相对较窄。利用Arrhenius定律拟合得到有效能垒为459 K,τ0为1.11 × 1010 s,是当时报道的3d-4f SMMs中最高的能垒(图4(b))。通过理论计算,当DyIII离子处于压扁的五角双锥配位构型中,可以有效地抑制QTM。

Figure 4. The molecular structure (a) and τ versus T1 plot (black dots) (b) for 4. The solid line is fitting curve with the Arrhenius law

4. 4的分子结构(a)和τT1曲线(黑点) (b)。实线是符合Arrhenius定律的曲线

2018年,一种能够进行单晶转化[22]的双核配合物被合成,分子式为FeDy(mepao)3(mepaoH)(NCS) (H2O)2∙2H2O (5, mepaoH = 甲基-2-吡啶基酮肟)。在配合物5中,FeII与来自三个双配体的六个氧原子配位,采用扭曲的八面体构型。这三种介配体也以μ-NO配位方式桥接DyIII和FeII离子,形成双核结构。DyIII不仅与三个O原子结合,还与中性分子Hmepao的两个N原子、两个氧原子和一个NCS结合,形成扭曲的四方反棱柱构型。加热后,配合物5发生单晶转变,失去一个配位水分子生成 [FeDy(mepao)3(mepaoH) (NCS)2(H2O)]∙2H2O (6),其中失去的水分子被一个与DyIII配位的NCSanion所取代。从67的转化是一个分子间的过程。随着温度的升高,所有配位水分子进一步丢失,形成[Fe2Dy2(mepao)6(mepaoH)2(NCS)4] [23] (7)。在7中,两个[FeDy]单元是由两个双阴离子的两个氧原子桥联的。配合物67可以再水合形成配合物5 (图5)。在单晶转变过程中,配位键发生了重组。对配合物5~7进行了交流磁化率测量,5在2.5 K以上没有出现任何虚部交流磁化率信号(图6(a)),6显示微弱的频率依赖的虚部磁化率信号,没有明显的峰值(图6(b)),而7表现出SMM行为,低温“尾巴”表明存在相对较快的弛豫过程或QTM (图6(c))。

Figure 5. Transformation of crystal structures of 5 (left), 6 (middle) and 7 (right)

5. 5 (左)、6 (中)和7 (右)的晶体结构转变

Figure 6. Temperature dependence of the in-phase (χ'M) and out-of-phase (χ''M) AC magnetic susceptibilities at a zero field for 5 (a), 6 (b) and 7 (c)

6. 零场下,5 (a)、6 (b)和7 (c)的实部(χ'M)和虚部(χ''M)交流磁化率的温度依赖性

2.2. 其他类型FeIII-Ln单分子磁体

除了线性的Fe-Ln SMMs外,其他金属骨架的Fe-Ln配合物也表现出优异的磁性能。2009年,Powell [34]研究组合成了具有代表性的多核[FeIII4Dy2(μ4-O)2(NO3)2(piv)6(Hedte)2] (8, H4edte = N,N,N',N'-四个(2-羟乙基)乙二胺)。该配合物的核心结构由[FeIII4Dy2(μ4-O)2]14+组成,其中四个FeIII离子呈共面“蝴蝶”状排列,每个[Fe3]三角形通过μ4-O桥接至DyIII。此外,每个去质子配体Hedte3通过其两个氮原子与Fe螯合,在Fe-Fe和Fe-Dy之间提供三个醇氧桥(图7(a))。8在低于6 K的温度下表现出强烈的频率依赖性交流磁化率数据。随着频率的增加,虚部没有出现完整的峰值。当施加1.2 kOe的外场时,8表现出明显的频率依赖性,具有明显的峰,其有效能垒为30.86 K,τ0为3.7 × 108 s (图7(b))。8的单分子磁性行为可能归因于具有大自旋态的强各向异性的DyIII离子的存在,与配合物1的原因相似。

Figure 7. The molecular structure (a) and ln(τ1) versus T1 plot (b) for 8 (red dots). The solid line is fitting curve with the Arrhenius law

7. 8 (红点)的分子结构图(a)与的ln(τ1)-T1图(b)。实线为符合Arrhenius定律的拟合曲线

2015年Powe等人[35] [36]利用氰乙酸酯配体首次合成了三个压缩八面体结构的六核配合物。这些配合物的分子式为[Fe2Dy4(μ4-O)2(μ3-OH)2.36(μ3-OMe)1.64(O2CCH2CN)10(MeOH)5(H2O)]∙0.36H2O∙3MeOH (Ln = Dy (9), Y (9a),Gd(9b))。该配合物具有晶体倒置对称性,可视为异双烷,其中两个[Fe2Ln2O2(OH/OMe)2]立方烷单元共享一个共同的[Fe2O2]面,从而形成[Fe2Dy4(μ4-O)2(μ3-OH)2.36(μ3-OMe)1.64]10+核。两种LnIII离子在配合物内均四方反棱柱配位构型(图8)。χMT值在高温下趋于饱和,尽管99a的室温值接近6个无相互作用离子的预期值(分别为65.50和8.75 cm3 K mol1)。当温度降低时,三种配合物的χMT持续下降,可能是由于9中各向异性DyIII离子的Stark亚能级的热布居减少,同时也证实了配合物9a9b中存在反铁磁耦合,9中存在强的磁各向异性。因此,在零场下对9的交流磁化率测试揭示了其慢磁弛豫行为,有效势垒为34.0 K,指前因子为2.0 × 1011 s。

Figure 8. The molecular structure of 9

8. 9的分子结构

2017年,Powell等人[36]合成了一类环状簇[FeIII4LnIII2(Htea)4(μ-N3)4(N3)3(piv)3] (Ln = Gd (10), Tb (11), Dy (12), Ho(13))。这些配位团簇具有中心对称的{Fe4Dy2}核,所有六个金属离子都以共面排列。核心是由两个不同的构建单元组成:{Fe2(μ-N3)2(μ-piv)}+和{Dy(teaH)2},由去质子配体Htea2的氧原子桥接(图9(a))。10在室温下的磁化率值为35.07 cm3 mol1 K,接近理论值,在几乎整个温度范围内(300~4 K),χMT的逐渐增加和高值表明在10中存在主要的铁磁相互作用,11~13也存在铁磁相互作用。11~13在5 K以下表现出明显的频率相关的同相和非相分量,有效能垒分别为40.0 K、36.9 K和24.0 K (图9(b)),11弛豫时间的最大,13的最小。值得注意的是,配合物13是HoIII中第一个表现出SMM行为的Fe-Ln化合物。通过HF-EPR测试,评估了3d金属离子的各向异性以及3d和4f离子之间的相互作用,发现随着Ln离子原子序数的增加,JFe-Ln的铁磁性相互作用减弱(图10)。因此,3d和4f离子之间的相互作用成为合成3d-4f SMMs时需要考虑的关键因素。

Figure 9. The molecular structure of 10 (a) and In(τ1) versus T1 plot for 11 (red), 12 (blue) and 13 (green) (b). The solid lines are fitting curve with the Arrhenius law

9. 10的分子结构图(a)和11 (红)、12 (蓝)和13 (绿) In(τ1)-T1图(b)。实线为符合Arrhenius定律的拟合曲线

Figure 10. Exchange interaction between Fe and Ln ions (black) and effective anisotropy barrier (red)

10. Fe和Ln之间的交换相互作用(黑色)和有效各向异性势垒(红色)

2013年,一种异金属铁–镝配合物{Fe6Dy3}(14)被合成[45]。该配合物的核心可以可视化为阳离子[Dy(NO3)]2+部分覆盖在扭曲的八核轮状结构上,形成锥形排列。这种八核轮状结构由两个阳离子[FeIII3(tea)(N3)4]2+三聚体桥接两个阴离子单位[Dy(teaH2)2]组成。在这个配合物中,一部分三乙醇胺配体(teaH3)转化为新的配体1,1,2,2-四羟乙烷,位于锥形结构的中心,连接DyIII和FeIII (图11(a))。磁化率测量揭示了铁磁交换相互作用的存在。因此,进行了交流磁化率测量,并在零场下观察到明显的温度依赖和频率依赖信号。利用阿伦尼乌斯定律拟合得到该配合物的有效能垒为65.1 K,τ0为1.64 × 1012 s (图11(b))。

Figure 11. The molecular structure (a) and τ versus T1 plot (b) for 14. The solid line is fitting curve with the Arrhenius law

11. 14的分子结构(a)和τT1曲线(b)。实线为符合Arrhenius定律的拟合曲线

3. 结论

自从第一个FeIII单分子磁体{Fe8}报道以来,对其的研究日益深入。受此影响,大量的FeIII配合物相继被合成,其中包括各式各样的FeIII棒、FeIII轮、FeIII簇。在这些化合物中{Fe4}和{Fe16}属于单分子磁体,但目前来说,呈现出单分子磁体行为的铁配合物却并不多。这可能与FeIII离子本身的性质特点有关:尽管离子含有5个未成对电子(有利于得到高基态自旋值),但本身的单离子各向异性却极小(不利于产生分子的磁各向异性),仅仅依靠分子本身不对称的磁交换来实现分子的磁各向异性的途径往往难以控制。氰化物配体对过渡金属具有很强的亲和力,是一种常用的桥联配体,可以根据配体的类型来构建多种分子磁性材料。无论是在提高配合物中Fe中心的数目,或是构筑新型的FeIII单分子磁体,还是加深对FeIII配合物中磁交换机理的理解上,都迫切需要进一步研究。

目前3d-4f配合物大多数都为Mn-Ln和Cu-Ln类化合物,对Fe-Ln簇合物的研究非常少。即便报道过的为数不多的Fe-Ln体系中,呈现慢磁弛豫现象的例子很少,且仍存在核数不高和磁各向异性的根源不明等缺点。

基金项目

江苏省研究生科研与实践创新计划项目(KYCX24_3546、SJCX24_1995、SJCX24_1992)资助,南通大学大学生创新创业训练计划项目(2024116),南通大学大型仪器开放基金资助(KFJN2471、KFJN2437),感谢南通大学分析测试中心。

NOTES

*通讯作者。

参考文献

[1] Shao, D. and Wang, X. (2020) Development of Single-Molecule Magnets. Chinese Journal of Chemistry, 38, 1005-1018.
https://doi.org/10.1002/cjoc.202000090
[2] Liu, S., Liu, B., Ding, M., Meng, Y., Jing, J., Zhang, Y., et al. (2020) Substituent Effects of Auxiliary Ligands in Mononuclear Dibenzoylmethane DyIII/ErIII Complexes: Single-Molecule Magnetic Behavior and Luminescence Properties. CrystEngComm, 22, 7929-7934.
https://doi.org/10.1039/d0ce01147a
[3] Liu, W.J., Chen, Y.M. and Du, Y.J. (2021) Construction, Structure and Magnetic Properties of an Acylhydrazone Schiff Base Mononuclear Erbium Complex. Chemical Research, 32, 401-405.
http://dx.doi.org/10.14002/j.hxya.2021.05.003
[4] Zhu, Z. and Tang, J. (2018) Geometry and Magnetism of Lanthanide Compounds. In: Chandrasekhar, V. and Pointillart, F., Eds., Topics in Organometallic Chemistry, Springer International Publishing, 191-226.
https://doi.org/10.1007/3418_2018_3
[5] Boudalis, A.K., Sanakis, Y., Clemente-Juan, J.M., Donnadieu, B., Nastopoulos, V., Mari, A., et al. (2008) A Family of Enneanuclear Iron(II) Single-Molecule Magnets. ChemistryA European Journal, 14, 2514-2526.
https://doi.org/10.1002/chem.200701487
[6] Moragues-Cánovas, M., Rivière, É., Ricard, L., Paulsen, C., Wernsdorfer, W., Rajaraman, G., et al. (2004) Resonant Quantum Tunneling in a New Tetranuclear Iron(III)-Based Single-Molecule Magnet. Advanced Materials, 16, 1101-1105.
https://doi.org/10.1002/adma.200306479
[7] Cornia, A., Fabretti, A.C., Garrisi, P., Mortalò, C., Bonacchi, D., Sessoli, R., et al. (2004) Tuneable Energy Barriers in Tetrairon(III) Single-Molecule Magnets. Journal of Magnetism and Magnetic Materials, 272, E749-E751.
https://doi.org/10.1016/j.jmmm.2003.12.1150
[8] Mishra, A., Wernsdorfer, W., Abboud, K.A. and Christou, G. (2004) Initial Observation of Magnetization Hysteresis and Quantum Tunneling in Mixed Manganese-Lanthanide Single-Molecule Magnets. Journal of the American Chemical Society, 126, 15648-15649.
https://doi.org/10.1021/ja0452727
[9] Zhang, P., Zhang, L. and Tang, J. (2015) Lanthanide Single Molecule Magnets: Progress and Perspective. Dalton Transactions, 44, 3923-3929.
https://doi.org/10.1039/c4dt03329a
[10] Rigamonti, L., Piccioli, M., Nava, A., Malavolti, L., Cortigiani, B., Sessoli, R., et al. (2017) Structure, Magnetic Properties and Thermal Sublimation of Fluorinated Fe4 Single-Molecule Magnets. Polyhedron, 128, 9-17.
https://doi.org/10.1016/j.poly.2017.02.036
[11] Xiao, H.M. and Shi, L.C. (2012) The Application Research of Single-Molecule Magnets and Molecular Spin Electronics Materials. Advanced Materials Research, 485, 522-525.
https://doi.org/10.4028/www.scientific.net/amr.485.522
[12] Thomsen, M.K., Nyvang, A., Walsh, J.P.S., Bunting, P.C., Long, J.R., Neese, F., et al. (2019) Insights into Single-Molecule-Magnet Behavior from the Experimental Electron Density of Linear Two-Coordinate Iron Complexes. Inorganic Chemistry, 58, 3211-3218.
https://doi.org/10.1021/acs.inorgchem.8b03301
[13] Ferbinteanu, M., Kajiwara, T., Choi, K., Nojiri, H., Nakamoto, A., Kojima, N., et al. (2006) A Binuclear Fe(III)Dy(III) Single Molecule Magnet. Quantum Effects and Models. Journal of the American Chemical Society, 128, 9008-9009.
https://doi.org/10.1021/ja062399i
[14] Pointillart, F., Bernot, K., Sessoli, R. and Gatteschi, D. (2007) Effects of 3d-4f Magnetic Exchange Interactions on the Dynamics of the Magnetization of DyIII-MII-DyIII Trinuclear Clusters. ChemistryA European Journal, 13, 1602-1609.
https://doi.org/10.1002/chem.200601194
[15] Wei, R., Liu, T., Li, J., Zhang, X., Chen, Y. and Zhang, Y. (2019) Tuning the Magnetization Dynamic Properties of Nd∙∙∙Fe and Nd∙∙∙Co Single-Molecular Magnets by Introducing 3d-4f Magnetic Interactions. ChemistryAn Asian Journal, 14, 2029-2035.
https://doi.org/10.1002/asia.201900139
[16] Li, S., Xiong, J., Yuan, Q., Zhu, W., Gong, H., Wang, F., et al. (2021) Effect of the Transition Metal Ions on the Single-Molecule Magnet Properties in a Family of Air-Stable 3d-4f Ion-Pair Compounds with Pentagonal Bipyramidal Ln(III) Ions. Inorganic Chemistry, 60, 18990-19000.
https://doi.org/10.1021/acs.inorgchem.1c02828
[17] Zhang, Y., Guo, Z., Xie, S., Li, H., Zhu, W., Liu, L., et al. (2015) Tuning the Origin of Magnetic Relaxation by Substituting the 3D or Rare-Earth Ions into Three Isostructural Cyano-Bridged 3d-4f Heterodinuclear Compounds. Inorganic Chemistry, 54, 10316-10322.
https://doi.org/10.1021/acs.inorgchem.5b01763
[18] Liu, Y., Chen, Y., Liu, J., Chen, W., Huang, G., Wu, S., et al. (2019) Cyanometallate-Bridged Didysprosium Single-Molecule Magnets Constructed with Single-Ion Magnet Building Block. Inorganic Chemistry, 59, 687-694.
https://doi.org/10.1021/acs.inorgchem.9b02948
[19] Topor, A., Liu, D., Maxim, C., Novitchi, G., Train, C., AlOthman, Z.A., et al. (2021) Design of FeIII-LnIII Binuclear Complexes Using Compartmental Ligands: Synthesis, Crystal Structures, Magnetic Properties, and ab Initio Analysis. Journal of Materials Chemistry C, 9, 10912-10926.
https://doi.org/10.1039/d1tc00894c
[20] Jing, Y., Wang, J., Kong, M., Wang, G., Zhang, Y. and Song, Y. (2023) Detailed Magnetic Properties and Theoretical Calculation in Ferromagnetic Coupling DyIII-MII 3d-4f Complexes Based on a 1,4,7,10-Tetraazacyclododecane Derivative. Inorganica Chimica Acta, 546, Article ID: 121301.
https://doi.org/10.1016/j.ica.2022.121301
[21] Liu, J., Wu, J., Chen, Y., Mereacre, V., Powell, A.K., Ungur, L., et al. (2014) A Heterometallic FeII-DyIII Single-Molecule Magnet with a Record Anisotropy Barrier. Angewandte Chemie International Edition, 53, 12966-12970.
https://doi.org/10.1002/anie.201407799
[22] Savva, M., Alexandropoulos, D.I., Pissas, M., Perlepes, S.P., Papatriantafyllopoulou, C., Sanakis, Y., et al. (2023) Heterometallic Clusters Based on an Uncommon Asymmetric “v-Shaped” [Fe3+(μ-Or)Ln3+(μ-Or)2Fe3+]6+ (ln = Gd, Tb, Dy, Ho) Structural Core and the Investigation of the Slow Relaxation of the Magnetization Behaviour of the [Fe2Dy] Analogue. Dalton Transactions, 52, 6997-7008.
https://doi.org/10.1039/d2dt03938a
[23] Chen, W., Chen, Y., Huang, G., Liu, J., Jia, J. and Tong, M. (2018) Cyclic off/Part/on Switching of Single-Molecule Magnet Behaviours via Multistep Single-Crystal-to-Single-Crystal Transformation between Discrete Fe(II)-Dy(III) Complexes. Chemical Communications, 54, 10886-10889.
https://doi.org/10.1039/c8cc04989k
[24] Murugesu, M., Mishra, A., Wernsdorfer, W., Abboud, K.A. and Christou, G. (2006) Mixed 3d/4d and 3d/4f Metal Clusters: Tetranuclear and Complexes, and the First Fe/4f Single-Molecule Magnets. Polyhedron, 25, 613-625.
https://doi.org/10.1016/j.poly.2005.08.029
[25] Bartolomé, J., Filoti, G., Kuncser, V., Schinteie, G., Mereacre, V., Anson, C.E., et al. (2009) Magnetostructural Correlations in the Tetranuclear Series of {Fe3LnO2} Butterfly Core Clusters: Magnetic and Mössbauer Spectroscopic Study. Physical Review B, 80, Article ID: 014430.
https://doi.org/10.1103/physrevb.80.014430
[26] Xu, G., Gamez, P., Tang, J., Clérac, R., Guo, Y. and Guo, Y. (2012) MIIIDyIII3 (M = FeIII, CoIII) Complexes: Three-Blade Propellers Exhibiting Slow Relaxation of Magnetization. Inorganic Chemistry, 51, 5693-5698.
https://doi.org/10.1021/ic300126q
[27] Baniodeh, A., Lan, Y., Novitchi, G., Mereacre, V., Sukhanov, A., Ferbinteanu, M., et al. (2013) Magnetic Anisotropy and Exchange Coupling in a Family of Isostructural FeIII2lnIII2 Complexes. Dalton Transactions, 42, 8926-8938.
https://doi.org/10.1039/c3dt00105a
[28] Peng, Y., Mereacre, V., Anson, C.E. and Powell, A.K. (2016) Multiple Superhyperfine Fields in a {DyFe2Dy} Coordination Cluster Revealed Using Bulk Susceptibility and 57Fe Mössbauer Studies. Physical Chemistry Chemical Physics, 18, 21469-21480.
https://doi.org/10.1039/c6cp02942f
[29] Peng, Y., Mereacre, V., Anson, C.E. and Powell, A.K. (2018) Butterfly MIII2Er2 (MIII = Fe and Al) Smms: Synthesis, Characterization, and Magnetic Properties. ACS Omega, 3, 6360-6368.
https://doi.org/10.1021/acsomega.8b00550
[30] Wang, H., Yin, C., Hu, Z., Chen, Y., Pan, Z., Song, Y., et al. (2019) Regulation of Magnetic Relaxation Behavior by Replacing 3d Transition Metal Ions in [M2Dy2] Complexes Containing Two Different Organic Chelating Ligands. Dalton Transactions, 48, 10011-10022.
https://doi.org/10.1039/c9dt00774a
[31] Zeng, M., Hu, K., Liu, C. and Kou, H. (2021) Heterotrimetallic Ni2Ln2Fe3 Chain Complexes Based on [Fe(1-CH3im)(CN)5]2. Dalton Transactions, 50, 6427-6431.
https://doi.org/10.1039/d1dt00693b
[32] Akhtar, M.N., AlDamen, M.A., McMillen, C.D., Escuer, A. and Mayans, J. (2021) Exploring the Role of Intramolecular Interactions in the Suppression of Quantum Tunneling of the Magnetization in a 3d-4f Single-Molecule Magnet. Inorganic Chemistry, 60, 9302-9308.
https://doi.org/10.1021/acs.inorgchem.0c03682
[33] Li, H., Meng, X., Wang, M., Wang, Y., Shi, W. and Cheng, P. (2019) A {Tb2Fe3} Pyramid Single-Molecule Magnet with Ferromagnetic Tb-Fe Interaction. Chinese Journal of Chemistry, 37, 373-377.
https://doi.org/10.1002/cjoc.201800589
[34] Akhtar, M.N., Mereacre, V., Novitchi, G., Tuchagues, J., Anson, C.E. and Powell, A.K. (2009) Probing Lanthanide Anisotropy in Fe-Ln Aggregates by Using Magnetic Susceptibility Measurements and 57Fe Mössbauer Spectroscopy. ChemistryA European Journal, 15, 7278-7282.
https://doi.org/10.1002/chem.200900758
[35] Polyzou, C.D., Baniodeh, A., Magnani, N., Mereacre, V., Zill, N., Anson, C.E., et al. (2015) Squashed {Fe2IIIM4III} Octahedra (M = Y, Gd, Dy) from the First Use of the Cyanoacetate Ligand in 3d/4f Coordination Chemistry. RSC Advances, 5, 10763-10767.
https://doi.org/10.1039/c4ra15458d
[36] Schmidt, S.F.M., Koo, C., Mereacre, V., Park, J., Heermann, D.W., Kataev, V., et al. (2017) A Three-Pronged Attack to Investigate the Electronic Structure of a Family of Ferromagnetic Fe4Ln2 Cyclic Coordination Clusters: A Combined Magnetic Susceptibility, High-Field/High-Frequency Electron Paramagnetic Resonance, and 57Fe Mössbauer Study. Inorganic Chemistry, 56, 4796-4806.
https://doi.org/10.1021/acs.inorgchem.6b02682
[37] Chen, S., Mereacre, V., Anson, C.E. and Powell, A.K. (2016) A Single Molecule Magnet to Single Molecule Magnet Transformation via a Solvothermal Process: Fe4Dy2→Fe6Dy3. Dalton Transactions, 45, 98-106.
https://doi.org/10.1039/c5dt03909f
[38] Chen, S., Mereacre, V., Kostakis, G.E., Anson, C.E. and Powell, A.K. (2017) Systematic Studies of Hexanuclear {MIII4LnIII2} Complexes (M = Fe, Ga; Ln = Er, Ho): Structures, Magnetic Properties and SMM Behavior. Inorganic Chemistry Frontiers, 4, 927-934.
https://doi.org/10.1039/c7qi00091j
[39] Chen, S., Mereacre, V., Prodius, D., Kostakis, G.E. and Powell, A.K. (2015) Developing a “Highway Code” to Steer the Structural and Electronic Properties of FeIII/DyIII Coordination Clusters. Inorganic Chemistry, 54, 3218-3227.
https://doi.org/10.1021/ic502809y
[40] Botezat, O., van Leusen, J., Hauser, J., Decurtins, S., Liu, S., Kögerler, P., et al. (2019) A Spontaneous Condensation Sequence from a {Fe6Dy3} Wheel to a {Fe7Dy4} Globe. Crystal Growth & Design, 19, 2097-2103.
https://doi.org/10.1021/acs.cgd.8b01668
[41] Wang, H., Chen, Y., Hu, Z., Yin, C., Zhang, Z. and Pan, Z. (2019) Modulation of the Directions of the Anisotropic Axes of DyIII Ions through Utilizing Two Kinds of Organic Ligands or Replacing DyIII Ions by FeIII Ions. CrystEngComm, 21, 5429-5439.
https://doi.org/10.1039/c9ce00894b
[42] Wang, H., Long, Q., Hu, Z., Yue, L., Yang, F., Yin, C., et al. (2019) Synthesis, Crystal Structures and Magnetic Properties of a Series of Chair-Like Heterometallic [Fe4Ln2] (Ln = GdIII, DyIII, HoIII, and ErIII) Complexes with Mixed Organic Ligands. Dalton Transactions, 48, 13472-13482.
https://doi.org/10.1039/c9dt02638j
[43] Athanasopoulou, A.A., Carrella, L.M. and Rentschler, E. (2019) Slow Relaxation of Magnetization in a {Fe6Dy} Complex Deriving from a Family of Highly Symmetric Metallacryptands. Dalton Transactions, 48, 4779-4783.
https://doi.org/10.1039/c9dt00552h
[44] Schray, D., Abbas, G., Lan, Y., Mereacre, V., Sundt, A., Dreiser, J., et al. (2010) Combined Magnetic Susceptibility Measurements and 57Fe Mössbauer Spectroscopy on a Ferromagnetic {FeIII4Dy4} Ring. Angewandte Chemie International Edition, 49, 5185-5188.
https://doi.org/10.1002/anie.201001110
[45] Schmidt, S., Prodius, D., Mereacre, V., Kostakis, G.E. and Powell, A.K. (2013) Unprecedented Chemical Transformation: Crystallographic Evidence for 1,1,2,2-Tetrahydroxyethane Captured within an Fe6Dy3 Single Molecule Magnet. Chemical Communications, 49, Article No. 1696.
https://doi.org/10.1039/c2cc38006d
[46] Abbas, G., Lan, Y., Mereacre, V., Wernsdorfer, W., Clérac, R., Buth, G., et al. (2009) Magnetic and 57Fe Mössbauer Study of the Single Molecule Magnet Behavior of a Dy3Fe7 Coordination Cluster. Inorganic Chemistry, 48, 9345-9355.
https://doi.org/10.1021/ic901248r
[47] Botezat, O., van Leusen, J., Kögerler, P. and Baca, S.G. (2019) Ultrasound-Assisted Formation of {Fe6Ln/Y4} Wheel-shaped Clusters and Condensed {Fe4Ln/Y2} Aggregates. European Journal of Inorganic Chemistry, 2019, 2236-2244.
https://doi.org/10.1002/ejic.201900175
[48] Zhao, X.-Q., Wang, Y.-Y., Bao, D.-X., et al. (2019) A Series of High-Nuclear 3d-4f (FeIII8LnIII2) Complexes: Syntheses, Structures, and Magnetic Properties. Applied Organometallic Chemistry, 33, Article No. 5222.
http://doi.oig/10.1002/aoc.5222
[49] Akhtar, M.N., AlDamen, M.A., Khan, J., Shahid, M. and Kirillov, A.M. (2020) Heterometallic (3d-4f) Coordination Clusters with Unique Topology: Self-Assembly Synthesis, Structural Features, and Magnetic Properties. Crystal Growth & Design, 20, 6545-6554.
https://doi.org/10.1021/acs.cgd.0c00737
[50] Li, S., Weng, Z., Jiang, L., Wei, R., Su, H., Long, L., et al. (2023) A Series of Heterometallic 3d-4f Polyoxometalates as Single-Molecule Magnets. Chinese Chemical Letters, 34, Article ID: 107251.
https://doi.org/10.1016/j.cclet.2022.02.056
[51] Prodius, D., Mereacre, V., Singh, P., Lan, Y., Mameri, S., Johnson, D.D., et al. (2018) Influence of Lanthanides on Spin-Relaxation and Spin-Structure in a Family of Fe7Ln4 Single Molecule Magnets. Journal of Materials Chemistry C, 6, 2862-2872.
https://doi.org/10.1039/c8tc00322j
[52] Zeng, Y., Xu, G., Hu, X., Chen, Z., Bu, X., Gao, S., et al. (2010) Single-Molecule-Magnet Behavior in a Fe12Sm4 Cluster. Inorganic Chemistry, 49, 9734-9736.
https://doi.org/10.1021/ic1009708
[53] Jin, Y., Wang, X., Zhang, N., Liu, C. and Kou, H. (2022) Assembly of Hydrazine-Bridged Cyclic FeIII4LnIII4 Octanuclear Complexes. Crystal Growth & Design, 22, 1263-1269.
https://doi.org/10.1021/acs.cgd.1c01222