非典型帕金森综合征视功能障碍及视网膜病变的研究进展
Progress in Visual Dysfunction and Retinopathy in Atypical Parkinson’s Syndrome
DOI: 10.12677/acm.2024.1482247, PDF, HTML, XML, 下载: 0  浏览: 32 
作者: 杨 丽, 刘柯婷, 杨百元:成都市第七人民医院神经内科,四川 成都;张 丹, 罗 曦, 徐严明*:四川大学华西医院神经内科,四川 成都
关键词: 多系统萎缩进行性核上性麻痹视功能障碍视网膜病变Multiple System Atrophy Progressive Supranuclear Palsy Visual Dysfunction Retinopathy
摘要: 视网膜病变是非典型帕金森综合征疾病的研究热点之一。视功能障碍及视网膜改变可能成为特异性生物学标志物,有利于疾病的鉴别与诊疗。文中就多系统萎缩、进行性核上性麻痹的视觉特征及视网膜病变的相关研究作综述。
Abstract: Retinopathy is one of the research hotspots of atypical parkinsonism diseases. Visual dysfunction and retinal changes may become specific biological markers, which are conducive to the identification and diagnosis and treatment of diseases. This paper reviews the visual features and retinopathy of multiple system atrophy and progressive supranuclear palsy.
文章引用:杨丽, 刘柯婷, 杨百元, 张丹, 罗曦, 徐严明. 非典型帕金森综合征视功能障碍及视网膜病变的研究进展[J]. 临床医学进展, 2024, 14(8): 533-540. https://doi.org/10.12677/acm.2024.1482247

1. 引言

非典型帕金森综合征(Atypical parkinsonian syndromes, APS)除了具有帕金森病样的表现之外,还伴有其他复杂的神经系统退行性改变的症状,这与原发性帕金森病的典型特征不同。其疾病谱中,包括多系统萎缩(Multiple system atrophy, MSA),进行性核上性麻痹(Progressive supranuclear palsy, PSP),路易体痴呆和皮质基底节变性等,其中MSA和PSP多为常见,也更难以鉴别。这些严重且通常快速进展的神经退行性疾病在临床上具有异质性,并表现出明显的表型重叠,其鉴别诊断极具挑战性,尤其在疾病的早中期阶段[1] [2]。患者可能会在病程的各个阶段提出不同的视觉主诉,或者在查体时表现出不同的眼部体征。这或许有利于疾病的识别及鉴别[1]-[3]

视网膜从胚胎学上起源于神经管,是中枢神经系统的组成部分。视网膜附着于眼球的后表面,可以通过透明的眼睛媒介较为轻松地进行探测。视网膜的细胞结构与大脑皮层非常相似,由三层神经细胞组成,它们通过光感受器、双极细胞和神经节细胞垂直连接,并通过调节中间神经元水平连接。视网膜可被视为“中枢神经系统的窗口”,可能为研究探索神经退行性疾病带来了新的思路[4] [5]。所以视网膜的结构和功能变化也越来越被认为是神经退行性疾病早期诊断、预后和进展的潜在生物标志物[6]-[8]。随着探测视网膜需求和要求的增高,光学相干层析成像技术(Optical coherence tomography, OCT)也发展迅速。OCT技术具有快速、无创、准确、重复性高等特点,新一代的扫频光学相干层析及光学相干断层扫描血管成像技术被越来越广泛地应用到视网膜结构及血管的探测中[9]-[11]

2. MSA的研究进展

2.1. MSA的临床表现与病理

MSA是一组以对左旋多巴反应较差的帕金森症状、皮质脊髓功能障碍、自主神经功能障碍、泌尿生殖系统功能障碍和共济失调为特征的成人发病的、散发的、进展迅速的神经退行性疾病。根据临床表现可分为以帕金森症候群为主的MSA亚型和以小脑共济失调为主的MSA亚型。MSA可能表现出典型的运动症状,如运动迟缓、震颤强直以及姿势不稳,还可能会表现出步态或肢体共济失调、小脑失调型构音障碍或小脑眼动功能障碍等小脑综合征的症状,以及伴有自主神经功能障碍(膀胱排空障碍、男性勃起功能障碍或明显的直立性血压下降等) [12]。MSA可能表现出与帕金森病相同的运动和非运动症状,但MSA的临床病程通常进展更快,平均生存期低于10年,且没有有效的症状或神经保护治疗[13]

目前认为诊断MSA的神经病理标志是胶质细胞质包涵体的形成,胶质细胞质包涵体在少突胶质细胞内呈α-突触核蛋白(a-synuclein)免疫反应阳性。在MSA中,可能出现伴有胶质变性的神经元丢失,主要集中在小脑、桥脑、基底节区以及脊髓等区域,并且这些损害分布广泛,可能累及中枢神经系统、外周神经系统和自主神经系统的许多其他部分,这也为MSA的多系统特性提供了支撑[14]-[17]。MSA与路易体痴呆、帕金森病一起被认为是突触核蛋白病[16]。在MSA中,最初异常的α-突触核蛋白沉积发生在形成胶质细胞质包涵体的少突胶质细胞中,而在其他突触核蛋白病中,α-突触核蛋白沉积发生在形成Lewy小体和Lewy神经突的神经元中[18]

2.2. MSA的视功能障碍

MSA患者较少出现视觉主诉症状,当患者报告与眼睛相关的症状时,多是由于传出(运动)视觉系统异常,如眼睑痉挛,视物模糊,或因动眼神经异常引起的复视。在初级视力方面,如视力、色觉或视野通常不受影响。MSA最重要的视觉征象是眼球运动和瞳孔反应功能障碍,但原发视力相对保留。其典型眼部特征包括眼睑痉挛、过度的方波急跳、轻度至中度的眼球运动受限、前庭眼动反射(vestibular-ocular reflex, VOR)抑制受损、眼球震颤(自发性或凝视诱发性)和事件相关诱发电位受损。不典型的表现包括眼球扫视运动减慢、垂直凝视麻痹、视觉幻觉和视网膜电图受损[19]-[21]

超过四分之一的MSA患者出现瞳孔反应性(如明暗瞳孔直径、光反射反应以及与服用药物相关的瞳孔反应)异常,并且在多数情况下是双侧对称的,这也是提示MSA自主神经功能受损的一个证据[22] [23]

与PD不同,MSA患者的对比敏感度几乎不受影响[24],视觉空间功能在很大程度上得以保留[25]

在MSA中视觉诱发电位(visual evoked potentials, VEP)几乎不受影响[24],偶有异常VEP的报道,但在MSA-C和MSA-P亚型之间没有明显差异[26]

2.3. MSA的视网膜改变

Fischer等人首次使用光频域光学相干层析成像对MSA的视网膜结构进行探究,发现MSA的视网膜神经纤维层(Retinal nerve fiber layer, RNFL)厚度除了颞侧象限以外都显著降低,颞侧RNFL保留提示中央视网膜来源的中央视觉输入对MSA没有明显影响,这为MSA的视网膜病理学提供了第一个证据,并进一步支持了这种神经退行性疾病的多系统性质。MSA鼻侧RNFL厚度的降低更显著,这与MSA患者通常具有正常的视力相一致,因为该轴突传递来自视网膜周边区域而不是中央视网膜的视觉输入[27]。这与既往报道MSA患者的VEP是正常的相一致,因为VEP测量的活动主要来自中央视野[24]

Albrecht团队利用了光频域光学相干层析成像对于视网膜结构层自动分割的特点,首次探究了除了RNFL层以外的视网膜结构层,结果显示MSA与正常对照组相比,外周黄斑明显萎缩,但黄斑总厚度、中央黄斑或RNFL厚度无差异。由GCL和IPL组成的神经节细胞复合体(ganglion cell complex, GCC),INL,外丛状层和外核层均未见明显差异[28]

Carlos E等人对MSA患者视网膜的变化进行了纵向随访研究,发现随着时间的推移,MSA患者的RNFL和GCC厚度显著减少,估计年平均损失分别为3.7 μm和1.8 μm,这提示了尽管MSA患者没有临床视觉症状,但进行性神经退行性变过程涉及视觉通路的神经视网膜结构[29]。之后又报告了3例(6只眼)经尸检证实为MSA的患者视网膜的组织病理学评估结果,发现与对照组相比,MSA患者的眼睛弥漫性视网膜神经节细胞丢失,在周围视网膜比在中央视网膜更明显。在3例MSA患者的GCL中,a-synuclein染色均未显示磷酸化的a-synuclein聚集物[30]

Jeeyun等人通过将视网膜厚度与统一多系统萎缩量表和全球残疾评分进行相关性分析,发现MSA的中心凹周围视网膜厚度显著减少,与临床严重程度显著相关。MSA患者的下侧和颞下侧RNFL厚度减少,这与PD不同,PD主要涉及颞侧和中心凹周围区域。由于两种类型的视网膜神经节细胞(Retinal ganglion cells, RGC),即P-RGC和M-RGC,被认为在地形上具有不同的位置,P型RGC主要分布在中央凹周围和颞区,与中央视野敏感度、对比度敏感度、颜色辨别力和视力有关,而M型RGC主要分布在周围和颞外区域,与无色视觉、周围视野敏感度、运动检测和低空间频率对比敏感度有关。因此视网膜受累模式的差异被假设与PD和MSA患者视觉主诉的临床对比特征有关[31]

3. PSP的研究进展

3.1. PSP的临床表现与病理

PSP是一种快速进展、药物反应不佳的神经变性疾病,一般于成年后起病,其临床表现主要为少动强直伴多巴胺能药物抵抗的帕金森综合征,垂直方向为主的核上性眼肌麻痹,早期的姿势不稳及频繁摔倒,假性球麻痹症状(如构音障碍、吞咽困难、饮水呛咳)以及认知功能损害等。PSP经典型,即PSP-RS型(PSP-Richardson’s syndrome),报告的最常见的发病症状除了帕金森样症状,假球麻痹和眼球运动受损以外,认知下降、微妙的个性变化(如淡漠)以及执行功能障碍(计划困难、多任务处理困难)也较突出[32]-[34]。国际运动障碍协会在2017年,更新了PSP的诊断及鉴别标准,并对其多种临床亚型进行了重新定义,显著提高了诊断的敏感性,病理诊断仍作为确诊的金标准。因对药物反应性差,且缺乏有效的特异性治疗,PSP患者的生活质量严重降低,预后不佳[34] [35]

PSP病理学特征是出现嗜银性、tau蛋白阳性的球形神经原纤维扭曲缠结,主要集中在在基底节、额叶皮质和脑干。还可能出现包括苍白球、丘脑底核、中脑导水管周围灰质、黑质、下橄榄核及小脑齿状核等处不同程度的神经元丢失,胶质细胞增生而出现胶样变性[36]。PSP为tau蛋白疾病,由tau蛋白在四个重叠区域异常积聚形成的,tau病理和神经元丢失的区域分布是临床异质性的病理来源[37] [38]。PSP-RS患者早期大脑皮层受到影响,接着是基底神经节、桥脑核和齿状核,然后是额叶和顶叶,最后是其他新皮质区和小脑结构[39]。具有更多皮质症状的PSP综合征中,如PSP-皮质基底节综合征型(PSP with corticobasal syndrome, PSP-CBS)、PSP-言语障碍型(PSP with predominant speech/language disorder, PSP-SL)、PSP-额颞叶痴呆型(PSP with predominant frontal presentation, PSP-F)已被证实有更严重和广泛的皮质tau蛋白病变。与PSP-RS相比,以脑干为主的PSP综合征,如PSP-帕金森综合征型(PSP with predominant parkinsonism, PSP-P)和PSP-伴冻结步态型(PSP-with gait freezing, PSP-PGF),其皮质tau蛋白病变较轻,苍白球、丘脑底核和黑质的变性更严重[32] [40] [41]

3.2. PSP的视功能障碍

大约三分之二的PSP患者在发病后的一年内出现视觉症状,可能出现视力、色觉和视野的缺陷。诊断和鉴别PSP的有用视觉征象有:垂直性核上性凝视麻痹、眼睑痉挛和眼睑开合失用等。大约三分之一的PSP患者有眼睑活动障碍,自发和随意运动均受到影响,由于眼球和眼睑运动高度协调,尤其是在垂直面上,垂直性核上性凝视麻痹通常被视为PSP最具代表性的视觉特征,随着病情的进展,最终可能出现更广泛的凝视麻痹,也因如此,复视在PSP患者中很常见[42] [43]。PSP常出现眼球运动减慢,垂直扫视能力尤其显著降低[44],以及可能出现眼球固定异常,如出现方波极跳[45]

PSP的特点是胆碱能神经递质系统普遍缺乏,使用散瞳药物后有较正常人有更明显瞳孔扩张反应,老年痴呆及血管性痴呆患者也有相同的表现,所以这种反应可能是非特异的[46]。PSP患者被发现在黑暗中瞳孔直径变小[47]

PSP的VOR增益受损,不会出现明显的代偿性眼球运动,这可能与小脑功能障碍有关[48]。并且,与MSA不同的是PSP的对比敏感度受损,这可能归因为视网膜对于对比度信息的处理受损[49],其视觉空间能力也受损[25]

视觉幻觉在PSP患者中较为少见,发生率约小于5% [50]。由于视觉错觉等原因,PSP患者可能出现视觉阅读障碍、阅读速度降低和自我纠正率增加等问题[42]

3.3. PSP的视网膜改变

Albrecht及其团队发现在PSP患者中GCC和外核层层厚度减少,利用外核层和外丛状层之间的比率(截止值为3.1)以及INL小于46 mm的额外限制,可以在患者样本中区分PSP和PD,敏感性为96%,特异性为70%。提示了INL和外核层在PD和APS中的重要意义,可能有助于鉴别区分这些疾病[28]

Schneider等人使用SS-OCT发现PSP的视网膜总厚度(whole retinal thickness, WRT)和INL的显著变薄。与单一视网膜层变薄的总体趋势相反,PSP组与其他各组相比,外丛状层的相对和绝对厚度均有所增加,鼻侧明显,尤其与MSA组相比具有显著性差异。MSA组与其他各组相比,外核层的相对和绝对厚度增加,与PSP组相比具有显著性差异。PSP中的外丛状层增厚和MSA的外核层增厚具有高度特异性,外丛状层和外核层中的神经元生长可能反映了对视网膜内层疾病相关神经退行性变过程的代偿反应。外核层与外丛状层的比率可以高度敏感性和特异性区分PSP和MSA (阈值比率为5.03时,敏感性为88%,特异性为91%) [51]

Stemplewitz等人发现PSP患者与正常对照组相比,下鼻和下颞区RNFL厚度减小,黄斑总体积和大多数黄斑区域的厚度均减小,但与疾病的持续时间或严重程度无关[52]

Sevim等人发现患有PSP (平均病程3.5 ± 1.8年)的患者在所有区域的RNFL都较薄,与PD相比较,PSP在上侧RNFL,GCL,IPL,INL和IRL层均显著变薄[53]。Alkabie也有相同的发现,与PD及正常对照组比较,PSP患者的总体RNFL厚度降低,尤其是在病程超过3年以上,但黄斑总体积无差异。PSP疾病持续3年后,预计视网膜神经纤维层的损失程度较PD相比更大,可能代表了区分两者的潜在生物标志物[54]

tau病理被认为在AD的视网膜神经节细胞丢失中起关键作用,这也可能是PSP中RNFL变薄的原因,其机制可能是视网膜神经节细胞轴突的神经纤维变性,过度磷酸化和泛素化的tau蛋白从微管分离和沉积,导致微管不稳定和神经纤维缠结[55] [56]。但至今还未从PSP的视网膜中发现tau蛋白沉积的证据[57]。另外,PSP视网膜萎缩的程度似乎与脑萎缩是平行的,PSP患者的MRI表现出相当大的萎缩,主要在中脑和额颞区,但PD患者的MRI相对正常[58] [59]

4. 总结与展望

目前发现MSA和PSP有更显著的视网膜变化和更快的疾病进展。现在对于APS视网膜的研究多是横断面、小样本研究,对于MSA和PSP的诊断未使用金标准(病理活检),有些眼部或其他共病在老年患者中很常见,未被排除。这些都可能会影响研究结果。

视网膜被认为是中枢系统的窗口,通过对视网膜的探索,有助于发现神经退行性疾病的其他证据。快速无创的OCT技术也被更多的受试者接受,应用越来越广泛。随着研究的日益深入,探究APS的视觉特征及视网膜改变有助于更深地了解疾病症状及机制,寻找可能的生物学标志物,提高疾病的诊断准确性。有助于增加临床医师对患者全方位评估以及提高对患者生活质量改善的意识。

NOTES

*通讯作者。

参考文献

[1] Deutschländer, A.B., Ross, O.A., Dickson, D.W. and Wszolek, Z.K. (2017) Atypical Parkinsonian Syndromes: A General Neurologist’s Perspective. European Journal of Neurology, 25, 41-58.
https://doi.org/10.1111/ene.13412
[2] McFarland, N.R. (2016) Diagnostic Approach to Atypical Parkinsonian Syndromes. CONTINUUM: Lifelong Learning in Neurology, 22, 1117-1142.
https://doi.org/10.1212/con.0000000000000348
[3] Levin, J., Kurz, A., Arzberger, T., Giese, A. and Höglinger, G.U. (2016) The Differential Diagnosis and Treatment of Atypical Parkinsonism. Deutsches Ärzteblatt international, 113, 61-69.
https://doi.org/10.3238/arztebl.2016.0061
[4] Miller, N. and Drachman, D.A. (2006) The Optic Nerve: A Window into Diseases of the Brain? Neurology, 67, 1742-1743.
https://doi.org/10.1212/01.wnl.0000250233.41910.2f
[5] London, A., Benhar, I. and Schwartz, M. (2012) The Retina as a Window to the Brain—From Eye Research to CNS Disorders. Nature Reviews Neurology, 9, 44-53.
https://doi.org/10.1038/nrneurol.2012.227
[6] La Morgia, C., Ross‐Cisneros, F.N., Koronyo, Y., Hannibal, J., Gallassi, R., Cantalupo, G., et al. (2015) Melanopsin Retinal Ganglion Cell Loss in Alzheimer Disease. Annals of Neurology, 79, 90-109.
https://doi.org/10.1002/ana.24548
[7] Archibald, N.K., Clarke, M.P., Mosimann, U.P. and Burn, D.J. (2009) The Retina in Parkinson’s Disease. Brain, 132, 1128-1145.
https://doi.org/10.1093/brain/awp068
[8] Lim, J.K.H., Li, Q., He, Z., Vingrys, A.J., Wong, V.H.Y., Currier, N., et al. (2016) The Eye as a Biomarker for Alzheimer’s Disease. Frontiers in Neuroscience, 10, Article No. 536.
https://doi.org/10.3389/fnins.2016.00536
[9] Beck, M., Joshi, D.S., Berger, L., Klose, G., De Zanet, S., Mosinska, A., et al. (2020) Comparison of Drusen Volume Assessed by Two Different OCT Devices. Journal of Clinical Medicine, 9, Article No. 2657.
https://doi.org/10.3390/jcm9082657
[10] Haas, A., Ahmed, D., Stattin, M., Graf, A., Krepler, K. and Ansari‐Shahrezaei, S. (2020) Comparison of Macular Neovascularization Lesion Size by the Use of Spectral‐Domain Optical Coherence Tomography Angiography and Swept‐Source Optical Coherence Tomography Angiography versus Indocyanine Green Angiography. Acta Ophthalmologica, 99, e260-e266.
https://doi.org/10.1111/aos.14572
[11] Aumann, S., Donner, S., Fischer, J. and Müller, F. (2019) Optical Coherence Tomography (OCT): Principle and Technical Realization. In: Bille, J.F., Ed., High Resolution Imaging in Microscopy and Ophthalmology: New Frontiers in Biomedical Optics, Springer International Publishing, Cham, 59-85.
https://doi.org/10.1007/978-3-030-16638-0_3
[12] Gilman, S., Wenning, G.K., Low, P.A., Brooks, D.J., Mathias, C.J., Trojanowski, J.Q., et al. (2008) Second Consensus Statement on the Diagnosis of Multiple System Atrophy. Neurology, 71, 670-676.
https://doi.org/10.1212/01.wnl.0000324625.00404.15
[13] Roncevic, D., Palma, J., Martinez, J., Goulding, N., Norcliffe-Kaufmann, L. and Kaufmann, H. (2013) Cerebellar and Parkinsonian Phenotypes in Multiple System Atrophy: Similarities, Differences and Survival. Journal of Neural Transmission, 121, 507-512.
https://doi.org/10.1007/s00702-013-1133-7
[14] Papp, M.I., Kahn, J.E. and Lantos, P.L. (1989) Glial Cytoplasmic Inclusions in the CNS of Patients with Multiple System Atrophy (Striatonigral Degeneration, Olivopontocerebellar Atrophy and Shy-Drager Syndrome). Journal of the Neurological Sciences, 94, 79-100.
https://doi.org/10.1016/0022-510x(89)90219-0
[15] Meissner, W.G., Fernagut, P., Dehay, B., Péran, P., Traon, A.P., Foubert‐Samier, A., et al. (2019) Multiple System Atrophy: Recent Developments and Future Perspectives. Movement Disorders, 34, 1629-1642.
https://doi.org/10.1002/mds.27894
[16] Jellinger, K.A. (2014) Neuropathology of Multiple System Atrophy: New Thoughts about Pathogenesis. Movement Disorders, 29, 1720-1741.
https://doi.org/10.1002/mds.26052
[17] Trojanowski, J.Q. and Revesz, T. (2007) Proposed Neuropathological Criteria for the Post Mortem Diagnosis of Multiple System Atrophy. Neuropathology and Applied Neurobiology, 33, 615-620.
https://doi.org/10.1111/j.1365-2990.2007.00907.x
[18] Beyer, K. and Ariza, A. (2007) Protein Aggregation Mechanisms in Synucleinopathies: Commonalities and Differences. Journal of Neuropathology & Experimental Neurology, 66, 965-974.
https://doi.org/10.1097/nen.0b013e3181587d64
[19] Armstrong, R.A. (2014) Visual Signs and Symptoms of Multiple System Atrophy. Clinical and Experimental Optometry, 97, 483-491.
https://doi.org/10.1111/cxo.12206
[20] Leon-Sarmiento, F.E., Bayona-Prieto, J. and Gomez, J. (2005) Neurophysiology of Blepharospasm and Multiple System Atrophy: Clues to Its Pathophysiology. Parkinsonism & Related Disorders, 11, 199-201.
https://doi.org/10.1016/j.parkreldis.2004.07.011
[21] Anderson, T., Luxon, L., Quinn, N., Daniel, S., David Marsden, C. and Bronstein, A. (2008) Oculomotor Function in Multiple System Atrophy: Clinical and Laboratory Features in 30 Patients. Movement Disorders, 23, 977-984.
https://doi.org/10.1002/mds.21999
[22] Bremner, F. (2006) Pupil Findings in a Consecutive Series of 150 Patients with Generalised Autonomic Neuropathy. Journal of Neurology, Neurosurgery & Psychiatry, 77, 1163-1168.
https://doi.org/10.1136/jnnp.2006.092833
[23] Kuroda, M., Fukura, H., Saruki, N., Yoshikawa, D., Morita, T. and Goto, F. (1998) Vecuronium Dose Requirement and Pupillary Response in a Patient with Olivopontocerebellar Atrophy (OPCA). Canadian Journal of Anaesthesia, 45, 979-984.
https://doi.org/10.1007/bf03012305
[24] Delalande, I., Hache, J., Forzy, G., Bughin, M., Benhadjali, J. and Destée, A. (1998) Do Visual‐Evoked Potentials and Spatiotemporal Contrast Sensitivity Help to Distinguish Idiopathic Parkinson’s Disease and Multiple System Atrophy? Movement Disorders, 13, 446-452.
https://doi.org/10.1002/mds.870130312
[25] Bak, T.H. (2006) Visuospatial Functions in Atypical Parkinsonian Syndromes. Journal of Neurology, Neurosurgery & Psychiatry, 77, 454-456.
https://doi.org/10.1136/jnnp.2005.068239
[26] Abele, M., Schulz, J.B., Bürk, K., Topka, H., Dichgans, J. and Klockgether, T. (2000) Evoked Potentials in Multiple Systematrophy (MSA). Acta Neurologica Scandinavica, 101, 111-115.
https://doi.org/10.1034/j.1600-0404.2000.101002111.x
[27] Fischer, M.D., Synofzik, M., Heidlauf, R., Schicks, J., Srulijes, K., Kernstock, C., et al. (2011) Retinal Nerve Fiber Layer Loss in Multiple System Atrophy. Movement Disorders, 26, 914-916.
https://doi.org/10.1002/mds.23523
[28] Albrecht, P., Müller, A., Südmeyer, M., Ferrea, S., Ringelstein, M., Cohn, E., et al. (2012) Optical Coherence Tomography in Parkinsonian Syndromes. PLOS ONE, 7, e34891.
https://doi.org/10.1371/journal.pone.0034891
[29] Mendoza‐Santiesteban, C.E., Palma, J., Martinez, J., Norcliffe‐Kaufmann, L., Hedges, T.R. and Kaufmann, H. (2015) Progressive Retinal Structure Abnormalities in Multiple System Atrophy. Movement Disorders, 30, 1944-1953.
https://doi.org/10.1002/mds.26360
[30] Mendoza-Santiesteban, C.E., Palma, J., Ortuño-Lizarán, I., Cuenca, N. and Kaufmann, H. (2017) Pathologic Confirmation of Retinal Ganglion Cell Loss in Multiple System Atrophy. Neurology, 88, 2233-2235.
https://doi.org/10.1212/wnl.0000000000004020
[31] Ahn, J., Lee, J. and Kim, T.W. (2016) Retinal Thinning Correlates with Clinical Severity in Multiple System Atrophy. Journal of Neurology, 263, 2039-2047.
https://doi.org/10.1007/s00415-016-8230-0
[32] Boxer, A.L., Yu, J., Golbe, L.I., Litvan, I., Lang, A.E. and Höglinger, G.U. (2017) Advances in Progressive Supranuclear Palsy: New Diagnostic Criteria, Biomarkers, and Therapeutic Approaches. The Lancet Neurology, 16, 552-563.
https://doi.org/10.1016/s1474-4422(17)30157-6
[33] Coughlin, D.G. and Litvan, I. (2020) Progressive Supranuclear Palsy: Advances in Diagnosis and Management. Parkinsonism & Related Disorders, 73, 105-116.
https://doi.org/10.1016/j.parkreldis.2020.04.014
[34] Höglinger, G.U., Respondek, G., Stamelou, M., Kurz, C., Josephs, K.A., Lang, A.E., et al. (2017) Clinical Diagnosis of Progressive Supranuclear Palsy: The Movement Disorder Society Criteria. Movement Disorders, 32, 853-864.
https://doi.org/10.1002/mds.26987
[35] Stamelou, M. (2019) Sensitivity and Specificity of Diagnostic Criteria for Progressive Supranuclear Palsy. Movement Disorders, 34, 1087-1088.
https://doi.org/10.1002/mds.27778
[36] Dickson, D.W., Ahmed, Z., Algom, A.A., Tsuboi, Y. and Josephs, K.A. (2010) Neuropathology of Variants of Progressive Supranuclear Palsy. Current Opinion in Neurology, 23, 394-400.
https://doi.org/10.1097/wco.0b013e32833be924
[37] Kovacs, G.G. (2015) Invited Review: Neuropathology of Tauopathies: Principles and Practice. Neuropathology and Applied Neurobiology, 41, 3-23.
https://doi.org/10.1111/nan.12208
[38] Lopez, G., Bayulkem, K. and Hallett, M. (2016) Progressive Supranuclear Palsy (PSP): Richardson Syndrome and Other PSP Variants. Acta Neurologica Scandinavica, 134, 242-249.
https://doi.org/10.1111/ane.12546
[39] Williams, D.R., Holton, J.L., Strand, C., Pittman, A., de Silva, R., Lees, A.J., et al. (2007) Pathological Tau Burden and Distribution Distinguishes Progressive Supranuclear Palsy-Parkinsonism from Richardson’s Syndrome. Brain, 130, 1566-1576.
https://doi.org/10.1093/brain/awm104
[40] Williams, D.R. and Lees, A.J. (2009) Progressive Supranuclear Palsy: Clinicopathological Concepts and Diagnostic Challenges. The Lancet Neurology, 8, 270-279.
https://doi.org/10.1016/s1474-4422(09)70042-0
[41] Ling, H., de Silva, R., Massey, L.A., Courtney, R., Hondhamuni, G., Bajaj, N., et al. (2014) Characteristics of Progressive Supranuclear Palsy Presenting with Corticobasal Syndrome: A Cortical Variant. Neuropathology and Applied Neurobiology, 40, 149-163.
https://doi.org/10.1111/nan.12037
[42] Armstrong, R.A. (2011) Visual Signs and Symptoms of Progressive Supranuclear Palsy. Clinical and Experimental Optometry, 94, 150-160.
https://doi.org/10.1111/j.1444-0938.2010.00504.x
[43] Valls-Sole, J. (1997) Distinctive Abnormalities of Facial Reflexes in Patients with Progressive Supranuclear Palsy. Brain, 120, 1877-1883.
https://doi.org/10.1093/brain/120.10.1877
[44] Rivaud-Péchoux, S., Vidailhet, M., Gallouedec, G., Litvan, I., Gaymard, B. and Pierrot-Deseilligny, C. (2000) Longitudinal Ocular Motor Study in Corticobasal Degeneration and Progressive Supranuclear Palsy. Neurology, 54, 1029-1032.
https://doi.org/10.1212/wnl.54.5.1029
[45] Rascol, O., Sabatini, U., Simonetta-Moreau, M., Montastruc, J.L., Rascol, A. and Clanet, M. (1991) Square Wave Jerks in Parkinsonian Syndromes.. Journal of Neurology, Neurosurgery & Psychiatry, 54, 599-602.
https://doi.org/10.1136/jnnp.54.7.599
[46] Litvan, I. and FitzGibbon, E.J. (1996) Can Tropicamide Eye Drop Response Differentiate Patients with Progressive Supranuclear Palsy and Alzheimer’s Disease from Healthy Control Subjects? Neurology, 47, 1324-1326.
https://doi.org/10.1212/wnl.47.5.1324
[47] Schmidt, C., Herting, B., Prieur, S., Junghanns, S., Schweitzer, K., Globas, C., et al. (2007) Pupil Diameter in Darkness Differentiates Progressive Supranuclear Palsy (PSP) from Other Extrapyramidal Syndromes. Movement Disorders, 22, 2123-2126.
https://doi.org/10.1002/mds.21721
[48] Rascol, O., Sabatini, U., Fabre, N., Senard, J.M., Simonetta‐Moreau, M., Montastruc, J.L., et al. (1995) Abnormal Vestibuloocular Reflex Cancellation in Multiple System Atrophy and Progressive Supranuclear Palsy but Not in Parkinson’s Disease. Movement Disorders, 10, 163-170.
https://doi.org/10.1002/mds.870100206
[49] Langheinrich, T., Tebartz van Elst, L., Lagrèze, W.A., Bach, M., Lücking, C.H. and Greenlee, M.W. (2000) Visual Contrast Response Functions in Parkinson’s Disease: Evidence from Electroretinograms, Visually Evoked Potentials and Psychophysics. Clinical Neurophysiology, 111, 66-74.
https://doi.org/10.1016/s1388-2457(99)00223-0
[50] Cooper, A.D. and Josephs, K.A. (2009) Photophobia, Visual Hallucinations, and REM Sleep Behavior Disorder in Progressive Supranuclear Palsy and Corticobasal Degeneration: A Prospective Study. Parkinsonism & Related Disorders, 15, 59-61.
https://doi.org/10.1016/j.parkreldis.2008.01.011
[51] Schneider, M., Müller, H., Lauda, F., Tumani, H., Ludolph, A.C., Kassubek, J., et al. (2013) Retinal Single-Layer Analysis in Parkinsonian Syndromes: An Optical Coherence Tomography Study. Journal of Neural Transmission, 121, 41-47.
https://doi.org/10.1007/s00702-013-1072-3
[52] Stemplewitz, B., Kromer, R., Vettorazzi, E., Hidding, U., Frings, A. and Buhmann, C. (2017) Retinal Degeneration in Progressive Supranuclear Palsy Measured by Optical Coherence Tomography and Scanning Laser Polarimetry. Scientific Reports, 7, Article No. 5357.
https://doi.org/10.1038/s41598-017-05575-8
[53] Gulmez Sevim, D., Unlu, M., Gultekin, M., Karaca, C., Mirza, M. and Mirza, G.E. (2018) Evaluation of Retinal Changes in Progressive Supranuclear Palsy and Parkinson Disease. Journal of Neuro-Ophthalmology, 38, 151-155.
https://doi.org/10.1097/wno.0000000000000591
[54] Alkabie, S., Lange, A., Manogaran, P., Stoessl, A.J., Costello, F. and Barton, J.J.S. (2020) Optical Coherence Tomography of Patients with Parkinson’s Disease and Progressive Supranuclear Palsy. Clinical Neurology and Neurosurgery, 189, Article ID: 105635.
https://doi.org/10.1016/j.clineuro.2019.105635
[55] Chiasseu, M., Alarcon-Martinez, L., Belforte, N., Quintero, H., Dotigny, F., Destroismaisons, L., et al. (2017) Tau Accumulation in the Retina Promotes Early Neuronal Dysfunction and Precedes Brain Pathology in a Mouse Model of Alzheimer’s Disease. Molecular Neurodegeneration, 12, Article No. 58.
https://doi.org/10.1186/s13024-017-0199-3
[56] Bancher, C., Lassmann, H., Budka, H., Grundke-Iqbal, I., Iqbal, K., Wiche, G., et al. (1987) Neurofibrillary Tangles in Alzheimer’s Disease and Progressive Supranuclear Palsy: Antigenic Similarities and Differences. Microtubule-Associated Protein Tau Antigenicity Is Prominent in All Types of Tangles. Acta Neuropathologica, 74, 39-46.
https://doi.org/10.1007/bf00688336
[57] Kovacs, G.G., Lukic, M.J., Irwin, D.J., Arzberger, T., Respondek, G., Lee, E.B., et al. (2020) Distribution Patterns of Tau Pathology in Progressive Supranuclear Palsy. Acta Neuropathologica, 140, 99-119.
https://doi.org/10.1007/s00401-020-02158-2
[58] Seppi, K. (2007) MRI for the Differential Diagnosis of Neurodegenerative Parkinsonism in Clinical Practice. Parkinsonism & Related Disorders, 13, S400-S405.
https://doi.org/10.1016/s1353-8020(08)70038-5
[59] Savoiardo, M. (2003) Differential Diagnosis of Parkinson’s Disease and Atypical Parkinsonian Disorders by Magnetic Resonance Imaging. Neurological Sciences, 24, s35-s37.
https://doi.org/10.1007/s100720300036