基于常规产前检查的妊娠期糖尿病预测模型:进展与展望
Prediction Model for Gestational Diabetes Mellitus Based on Routine Antenatal Care: Progress and Prospects
DOI: 10.12677/acm.2024.1482239, PDF, HTML, XML, 下载: 3  浏览: 84 
作者: 谢 喜, 黄大元:吉首大学医学院,湖南 吉首;张 静*:常德市第一人民医院妇产科,湖南 常德
关键词: 妊娠期糖尿病早期预测产前检查Gestational Diabetes Mellitus Early Prediction Prenatal Screening
摘要: 本文旨在评估孕早期常规产前生化指标对妊娠期糖尿病GDM预测的应用和前景。本文系统地回顾了国内外文献,分析了空腹血糖、血脂、肝功能、肾功能、凝血功能及其他妊娠相关蛋白等在GDM预测中的作用和可靠性。分析发现空腹血糖、甘油三酯、低密度脂蛋白胆固醇、尿酸、肝酶(如GGT)、血小板指标(如MPV)以及孕早期PAPP-A等生化指标显示出了在GDM早期诊断中的潜在价值。这些指标的变化与GDM的发生密切相关,尤其是在孕早期的应用能够提供较高的敏感性和特异性。基于常规产前生化指标的综合应用能够有效提升对GDM的早期预测能力,有助于采取及早干预措施,改善孕妇和胎儿的健康结果。
Abstract: The aim of this paper is to assess the application and prospects of routine prenatal biochemical indicators in early pregnancy for the prediction of GDM in gestational diabetes mellitus. This paper systematically reviewed the national and international literature and analyzed the role and reliability of fasting blood glucose, lipids, liver function, renal function, coagulation function and other pregnancy-related proteins in the prediction of GDM. The analysis revealed that biochemical indicators such as fasting blood glucose, triglycerides, low-density lipoprotein cholesterol, uric acid, liver enzymes (e.g., GGT), platelet indexes (e.g., MPV), and PAPP-A in early pregnancy showed potential value in the early diagnosis of GDM. Changes in these indicators are closely related to the development of GDM, and their application especially in early pregnancy can provide high sensitivity and specificity. The comprehensive application based on routine prenatal biochemical indicators can effectively enhance the early prediction of GDM, which can help to take early interventions and improve the health outcomes of pregnant women and fetuses.
文章引用:谢喜, 张静, 黄大元. 基于常规产前检查的妊娠期糖尿病预测模型:进展与展望[J]. 临床医学进展, 2024, 14(8): 475-484. https://doi.org/10.12677/acm.2024.1482239

1. 引言

妊娠期糖尿病(gestational diabetes mellitus, GDM)是指在妊娠前糖代谢正常,但在妊娠期出现的糖尿病。GDM孕妇在妊娠期间更易出现巨大儿、先兆子痫及新生儿呼吸窘迫综合征等并发症。此外,产后这些女性还面临糖代谢异常、2型糖尿病、心血管疾病和肥胖的风险,这些风险也可能遗传给她们的子女[1]-[3]。2021年全球GDM的标化患病率达到了14.0% [4]。2019年在中国的一项研究评估显示中国妊娠期糖尿病的发病率为14.8%,可能是全球GDM患者最多的国家[5]。国内外学者越来越关注GDM的早期预测。目前的证据表明,GDM的早期检测和管理可以减少不良妊娠结局的发生频率,Clarke等人的研究表明,24周前诊断GDM与24周之后诊断GDM的新生儿复合结局率(低血糖、出生创伤、转入新生儿科住院治疗、死胎、新生儿死亡、呼吸窘迫和光疗)降低了9.7% [6]。目前,尚无公认的GDM筛查策略。本文总结了近年来产前检查时的常见临床指标对GDM的预测作用,以期在不增加经济成本的同时,对GDM做到早发现、早干预。

2. 空腹血糖与GDM

血糖值可直接反应血糖变化,妇女怀孕期间随着孕周的增加,母体雌孕激素增加,对葡萄糖的利用也会相应增加,而且孕妇肾血浆流量及肾小球滤过率增加,肾小管对糖的重吸收不变,胎儿也会从母体获取更多的葡萄糖供给自身发育,这导致了妇女怀孕期间清除葡萄糖的能力比非孕期增强,孕早中期空腹血糖下降约10%,但这并不代表孕早期检测空腹血糖(Fasting plasma glucose, FPG)没有意义。国外研究[7]表明妊娠早期FPG ≥ 5.11 mmol/L预测GDM发生风险的OR值为2.36 (95% CI: 1.930~3.186, P < 0.001)。还有研究[8]指出当FPG的临界值为4.86 mmol/L、5.11 mmol/L和5.52 mmol/L时,预测GDM的诊断准确性分别为66.5%、78.4%和88.2%,国内的研究结果与上述结果相似[9]。因此,孕早期FPG的监测对于及早发现和有效管理孕妇的血糖代谢异常至关重要,有助于减少妊娠并发症的风险,保障母婴健康。

3. 血常规与GDM

3.1. 白细胞

白细胞(leukocyte, WBC)是反映机体炎症状态的常用指标之一,其增高可引起免疫反应。一项纳入了20,707名孕妇的研究表明白细胞计数每增加一个单位,孕妇发生GDM的风险增加2.2% [10]。柯乳香[11]等的研究指出WBC单独预测GDM发生的曲线下面积为0.812。中性粒细胞是反应机体非特异性炎症反应的指标,淋巴细胞体现了获得性免疫,中性粒细胞/淋巴细胞比值(neutrophil-to-lymphocyte ratio, NLR)在多种疾病中有预测价值,Salciccia [12]等人指出NLR在转移性前列腺癌患者接受全身治疗的情况下,NLR升高与转移性前列腺癌患者的死亡风险增加相关;Misirlioglu [13]等研究发现NLR在缺血性脑卒中患者中与营养不良风险增加有关,并且是患者死亡的独立危险因素,可能与患者预后不良相关。Wang [14]等的研究发现NLR预测GDM发生的ROC曲线下面积(AUC)为0.78。Fagninou [15]等发现GDM孕妇的白细胞总数、淋巴细胞和血小板数量显著升高,GDM孕妇的淋巴细胞、单核细胞、中性粒细胞与高密度脂蛋白胆固醇(high density lipoprotein cholesterol, HDL-C)的比值均显著高于正常组,特别是淋巴细胞/HDL-C比值大于3.66的孕妇患GDM的风险是比值小于3.66的孕妇的4倍。凌思思[16]等通过前瞻性研究发现妊娠早期WBC、中性粒细胞、NLR水平预测GDM发生的ROC曲线下面积(AUC)分别为0.620、0.638、0.613,其中中性粒细胞的截断值在5.3 × 109/L时,预测GDM发生的敏感度为77.3%,特异度为50.0%。尽管孕早期白细胞计数和相关血液指标在预测妊娠期糖尿病中显示出一定的潜力,但其应用仍需谨慎。研究表明,白细胞和中性粒细胞/淋巴细胞比值等参数的变化与GDM的风险密切相关,但在临床上的具体应用和可靠性尚需进一步验证。特别是对于孕妇个体的血液参数变化,如何精准地预测其GDM发生的风险,以及如何在临床实践中引入这些指标作为常规筛查工具,都需要更多的大规模临床研究来验证其准确性和实用性。因此,对于这些生物标志物的研究还需要更深入的探索和进一步的验证,以便为妊娠期糖尿病的早期预防和管理提供更可靠的支持和指导。

3.2. 红细胞

血糖升高会引起葡萄糖氧化及耗氧量增加,缺氧状态下红细胞(Erythrocytes, RBC)代偿性增加;血红蛋白(hemoglobin, Hb)水平升高可能导致铁超负荷,引起铁介导的氧化应激反应,进而参与GDM的发生[17];血黏度会随着红细胞压积(Hematocrit, HCT)的增加而增高,血黏度的增加可干扰外周组织中胰岛素对葡萄糖的摄取,从而影响血糖代谢[17]。一项meta分析[18]指出高浓度Hb与GDM发生风险增加有关,Hb ≥ 120 g/L、Hb ≥ 130 g/L、Hb ≥ 140 g/L时OR值分别为1.93、1.71、2.10 (95% CI分别为1.44~2.81、1.19~2.46、1.65~2.68,P < 0.05),Sissala [19]等的多中心病例对照研究也得出了相似的结论。一项前瞻性研究发现发生GDM的孕妇平均血红蛋白、红细胞压积水平显著高于非GDM孕妇,联合使用Hb、HCT、RBC和FBS早期预测GDM的敏感度、特异度和AUC分别为0.87、0.70和0.83 [20]。还有回顾性队列研究[21]表明孕早期至孕中期Hb水平不变增加了GDM风险。尽管血红蛋白及其相关血液参数在妊娠期糖尿病早期预测中表现出潜力,但其作为预测工具的具体应用和临床价值尚需进一步深入的研究验证。当前的证据表明,血红蛋白水平的变化与GDM的发生密切相关,尤其是在孕早期[22],通过联合使用多个血液指标,如血红蛋白、红细胞压积和空腹血糖,可以提高对GDM发生风险的预测准确性。未来的研究应重点关注如何将这些生物标志物整合到临床实践中,以帮助早期识别高风险孕妇,并有效预防妊娠期糖尿病及其相关并发症的发生。

3.3. 血小板

GDM与血管功能障碍密切相关,尤其是血管内皮细胞的代谢改变。血小板能主动参与血液的止血和血栓形成,在心血管疾病、糖尿病等内皮功能障碍的病理过程中发挥重要作用。研究表明GDM不仅与内皮功能障碍有关[23],还与体内血小板活化和血小板高反应性有关[24]。一项回顾性研究[25] (n =1188)发现GDM与血小板压积(Thrombocytocrit, PCT)和平均血小板体积(Mean Platelet Volume, MPV)呈正相关,两者联合诊断GDM的曲线下面积为0.673。另一项研究[26] (n = 400)也得出了类似的结论:MPV是妊娠早期GDM的有效预测因子,其最佳截断值为7.38fl,诊断GDM的敏感性为70%,特异性为60%。现有研究表明通过监测孕早期的血小板相关参数,可以早期识别高风险孕妇,但这些生物标志物在临床实践中的应用还需要进一步验证。未来的研究应集中于大规模、前瞻性研究,以确立这些指标的标准化测量方法和临床应用规范。同时,还需探索其他可能的生物标志物,以提高早期预测的准确性和可靠性。

4. 肝功能与GDM

肝脏在维持葡萄糖稳态中发挥重要作用,通过检测肝酶、胆红素及蛋白的水平能直观地反应出肝功能的情况。谷丙转氨酶(Alanine Transaminase, ALT)是肝功能损害最敏感的指标,但多项研究表明孕早期ALT水平与GDM的发生风险关系不明显,原因可能是孕早期肝细胞变性坏死的比例不高[27] [28]。谷草转氨酶(Aspartate Aminotransferase, AST)主要由肝脏中的线粒体合成。线粒体功能降低时,三羧酸循环效率降低,导致分解葡萄与合成糖原的能力降低,引发血糖升高[27]。碱性磷酸酶(Alkaline Phosphatase, ALP)和γ-谷氨酰转移酶(Gamma-Glutamyltransferase, γGT)的高表达与肝脏的脂肪沉积、炎症反应和胰岛素抵抗有关[29]。因此肝酶水平的变化可能与GDM有关。有研究[29]-[32]发现孕早期肝酶水平升高与GDM的风险增加有关,且这种影响不受孕前体重的影响[31]。胆红素作为内源性抗氧化剂,可以抑制免疫反应、炎症反应的发生,抑制脂质氧化及氧自由基的形成,低水平的总胆红素(Total bilirubin, TBil)会增强体内的氧化应激反应及胰岛素抵抗,成为GDM发生的独立危险因素[33]。一项回顾性研究(n = 1207)发现,孕早期高GGT、低AST、低TBil水平是GDM的独立危险因素,其中GGT预测GDM具有较高的准确性(AUC = 0.896),最佳诊断点为13.32 U/L,敏感度为0.912,特异度为0.700,但孕早期ALT水平与GDM没有相关性[27]。王凤玲等[34]的研究(n = 312)有不同的结论:孕早期ALT水平是GDM的独立影响因素,OR值为2.761,ROC曲线下面积为0.682。综上所述,孕早期检测肝功能指标可能对GDM的早期诊断有重要临床意义。尽管目前研究结果存在一定的差异,肝功能指标在GDM早期预测中的潜力不可忽视。肝脏在葡萄糖代谢中起着关键作用,通过监测孕早期肝酶和胆红素水平的变化,可以为早期识别和干预GDM提供有价值的信息,特别是γGT和TBi,其水平的显著变化与GDM风险密切相关。现有研究对于某些肝功能指标的作用仍存在争议,不同研究的结论差异可能源于研究设计、样本量及检测方法的不同。因此,需要更多的大规模、前瞻性研究来验证和统一这些生物标志物在GDM早期预测中的应用标准。未来的研究应致力于探索肝功能指标与其他潜在生物标志物的联合预测模型,以提高预测的敏感性和特异性。这不仅有助于早期识别高风险孕妇,还能促进个体化的干预策略,从而改善妊娠期糖尿病的管理和母婴健康结局。

5. 肾功能与GDM

肾功能指标在GDM早期预测中的作用越来越受到重视。尿酸(Uric Acid, UA)、尿素氮(Blood Urea Nitrogen, BUN)和肌酐(Creatinine, Cre)作为肾功能的常见检测指标。研究表明UA水平升高可增加GDM发生的风险,这与胰岛素抵抗有关,BUN水平的增加诱导活性氧的产生,并通过抑制胰岛素受体底物的丝氨酸磷酸化,减弱胰岛素信号传导[35],从而影响血糖代谢。研究发现血清UA水平是GDM的独立危险因素[36]-[38],孕早期UA水平预测GDM的最佳临界值为226.55 μmol/L [36]。国外研究[39]表明血清UA水平为4.1~5、5.1~6和>6 mg/dl的人群中GDM的发生率分别是尿酸水平 < 3 mg/dl人群的2.46、3.42和4.9倍。另有多中心前瞻性研究(n = 13448) [35]发现较高浓度的BUN水平与GDM的风险增加呈正相关。综上所述,尿酸水平的升高与胰岛素抵抗有关,显著增加了GDM的风险。特别是血清尿酸水平在孕早期的测定,可以作为GDM的独立预测因子,这一发现具有广泛的临床意义,为GDM提供了早期预警的有效手段。但肾功能指标在GDM预测中的具体机制和应用仍需进一步探索。未来的研究应聚焦于大规模、前瞻性研究,以验证这些指标在不同人群中的普遍适用性和预测准确性。同时,应考虑将肾功能指标与其他潜在生物标志物结合,构建综合预测模型,提高GDM早期诊断的灵敏度和特异性。通过这些努力,早期识别高风险孕妇并进行及时干预,有望显著降低GDM及其相关并发症的发生率,从而改善孕妇和胎儿的健康结局。

6. 凝血常规与GDM

活化部分凝血活酶时间(Activated partial thromboplastin time, APTT)、凝血酶原时间(Prothrombin time, PT)、凝血酶时间(Thrombin time, TT)、纤维蛋白原(Fibrinogen, FIB)、国际标准化比值(International Normalized Ratio, INR)是凝血功能的常见指标。凝血因子Ⅺ、Ⅷ、Ⅸ主要在内源性凝血途径中发挥作用,通过测定APTT可间接检测其功能。凝血因子Ⅰ、Ⅱ、Ⅴ、Ⅶ、Ⅹ主要在外源性凝血途径中发挥作用,测定PT可间接检测其功能,因此可通过检测APTT、PT水平大致反应凝血因子的活性。在孕晚期孕妇会出现生理性高凝状态,凝血因子Ⅶ、Ⅷ、Ⅸ、Ⅹ、Ⅻ和FIB的合成、分泌大量增加,可降低产后出血的风险[40]。有研究表明GDM孕妇的凝血因子Ⅻ水平高于健康孕妇,可能与孕妇体内高糖状态损伤血管内皮后激活凝血系统有关[41]。高佳[42]等的研究指出GDM孕妇在孕早期APTT、PT、TT就有缩短,这表明GDM孕妇的凝血高凝变化从孕早期即开始。另有研究指出[43]孕早期APTT、TT联合BMI、FPG等构建的GDM风险预测模型AUC为0.892 (95% CI为0.858~0.927),敏感性为80.71%,特异性为86.85%。因此,检测孕早期凝血功能指标可能对GDM的早期诊断有重要的临床意义。凝血功能的变化可作为早期预警GDM的重要指标,通过这些指标的变化,可以在孕早期识别出高风险的孕妇,从而及早进行干预,降低GDM及其相关并发症的发生率。

7. 血脂与GDM

血清甘油三酯(triglycerides, TG)、血清总胆固醇(total cholesterol, TC)、低密度脂蛋白胆固醇(low density lipoprotein cholesterol, LDL-C)及高密度脂蛋白胆固醇(high density lipoprotein cholesterol, HDL-C)是常见的血脂指标。女性在怀孕期间血脂水平会有一定程度的升高,这既是母体为妊娠、分娩及产后哺乳储备能量,也是胎儿生长发育所需。雌激素的增高和胰岛素抵抗是妊娠期血脂升高的主要原因。有研究表明,妊娠早期脂质代谢改变可能导致GDM风险增加[44] [45]。赵丹[46]等一项纳入了1588名孕妇的前瞻性队列研究发现妊娠早期TG水平高的孕妇发生GDM的风险比TG水平正常的孕妇发生GDM的风险高出2.1倍,TG预测GDM的最佳ROC临界值为2.375 mmol/L。Dos [47]等研究发现Log (TG/HDL-C)水平 < 0.99可以用来排除未来发生GDM的风险。一项来自韩国前瞻性队列研究数据的二次分析发现残余胆固醇(Remnant cholesterol, RC)与GDM发生的风险呈正相关,RC作为GDM预测指标的ROC曲线下面积为0.8038 (95% CI为0.7338~0.8738),最佳RC截断值为24.30 mg/dl [48]。综上所述,血脂水平在GDM早期预测中的作用已经引起广泛关注。孕妇在怀孕期间血脂水平的升高是一种生理现象,反映了母体为支持妊娠和胎儿发育所进行的能量储备。然而,这一过程中,血脂代谢的异常变化可能预示着GDM的发生风险。研究表明,妊娠早期血脂指标的变化与GDM的发生密切相关。TG水平显著增加了孕妇患GDM的风险,其预测能力已经在多项研究中得到验证。通过结合多种血脂指标,可以构建更为准确的GDM预测模型。未来的研究应进一步探索血脂指标在不同人群中的预测效果,特别是考虑种族、地域和个体差异。同时,血脂指标与其他潜在风险因素(如BMI、家族史、生活方式)的联合分析,有望提高GDM预测的准确性。通过这些努力,可以在临床实践中实现对高风险孕妇的早期识别和干预,优化妊娠结局,改善母婴健康。

8. 妊娠相关蛋白与GDM

和妊娠相关血浆蛋白(Pregnancy Associated plasma Protein A, PAPP-A)在怀孕期间由胎盘滋养细胞分泌到母体循环中,是一种与胰岛素样生长因子结合蛋白4 (IGFBP4)有关的蛋白酶。PAPP-A可蛋白水解IGFBP-4,从而增加IGF的生物利用度。国外研究发现孕早期低水平的PAPP-A会增加妊娠期糖耐量异常和GDM发生的风险[49]-[51]。Yildiz [52]等研究发现血清MoM PAPP-A的最佳截断点(≤0.885),预测GDM的敏感度为66.7%,特异度为65.50%。国研究指出PAPP-A联合孕前BMI、年龄的多指标联合筛查可作为GDM预测指标[53]。尽管这些研究结果显示出PAPP-A在GDM早期预测中的潜力,但其作为独立预测指标的有效性仍需进一步验证。未来的研究应关注更大规模的样本量和多中心的研究设计,以确认PAPP-A在不同人群中的预测效果。此外,结合其他生物标志物和临床风险因素进行综合评估,可能会为GDM的早期识别和干预提供更为全面和有效的策略。

Table 1. Early prediction model for gestational diabetes

1. 妊娠期糖尿病早期预测模型

作者

筛查孕周

生物学指标

人数

研究设计

模型效率(AUC)

GDM

对照

柯乳香[11]

≤12

母体因素、TG、WBC

65

65

病例对照
研究

0.924

Shaarbaf Eidgahi等[20]

孕早期

母体因素、HCT、Hb、FBS、RBC

49

551

前瞻性队列研究

0.83

薛爱琴等[27]

7~12

母体因素、γ-GT

261

946

病例对照
研究

0.896

Zheng等[43]

10~13

母体因素、FPG、APTT、TT、TG、LDL-C

142

442

前瞻性队列研究

0.892

Gao等[48]

7~14

母体因素、TC、TG、HDL-c、LDL-c、RC (残余胆固醇)

37

553

前瞻性队列研究

0.8038

Niu等[54]

8~12

母体因素、HbA1c、UA、TG、HDL-C

1744

4328

病例对照
研究

0.803

Zhang等[55]

8~12

母体因素、FPG、HbA1c、LDL-c、TSH、APTT、LP

235

689

病例对照
研究

0.7542

Lin等[56]

6~13

母体因素、血清铁蛋白、空腹血糖、血红蛋白、甘油三脂

197

209

病例对照

研究

0.950

Basil等[57]

8~12

母体高危因素

52

201

前瞻性队列研究

0.814

Wei等[58]

≤16

母体因素、血常规、肝功能、肾功能、凝血功能

909

1117

回顾性研究

0.756

Tranidou等[59]

11~13 + 6

母体因素、β-HCG MoM、PAPP-A MoM、UtA-PI z-score

474

4443

前瞻性队列研究

0.678

9. GDM的早期预测模型

单一的临床指标预测GDM发生率的价值有限,多项指标的联合应用可提高诊断GDM的准确性。上表(表1)总结了常规产前检查的不同指标联合构建的GDM预测模型。

综上所述,这些研究结果为GDM早期预测提供了重要的参考,但仍需进一步验证和完善。未来的研究应包括更大规模、多中心的前瞻性研究,并探索多指标联合预测模型的应用,以提高预测的准确性和可靠性。此外,结合遗传学、代谢组学等多学科手段,可能为GDM的早期识别和干预提供更为全面和有效的策略。因此,常规产前筛查和临床资料联合筛查GDM具有一定的临床应用前景,通过对常规产前检查指标的综合分析和应用,能够在不增加经济成本的前提下,实现对GDM的早期发现和干预,改善妊娠结局,提高母婴健康水平。

NOTES

*通讯作者。

参考文献

[1] Song, C., Lyu, Y., Li, C., Liu, P., Li, J., Ma, R.C., et al. (2017) Long‐Term Risk of Diabetes in Women at Varying Durations after Gestational Diabetes: A Systematic Review and Meta‐Analysis with More than 2 Million Women. Obesity Reviews, 19, 421-429.
https://doi.org/10.1111/obr.12645
[2] Tam, W.H., Ma, R.C.W., Ozaki, R., Li, A.M., Chan, M.H.M., Yuen, L.Y., et al. (2017) In Utero Exposure to Maternal Hyperglycemia Increases Childhood Cardiometabolic Risk in Offspring. Diabetes Care, 40, 679-686.
https://doi.org/10.2337/dc16-2397
[3] Li, N., Yang, Y., Cui, D., Li, C., Ma, R.C.W., Li, J., et al. (2020) Effects of Lifestyle Intervention on Long‐Term Risk of Diabetes in Women with Prior Gestational Diabetes: A Systematic Review and Meta‐Analysis of Randomized Controlled Trials. Obesity Reviews, 22, e13122.
https://doi.org/10.1111/obr.13122
[4] Wang, H., Li, N., Chivese, T., Werfalli, M., Sun, H., Yuen, L., et al. (2022) IDF Diabetes Atlas: Estimation of Global and Regional Gestational Diabetes Mellitus Prevalence for 2021 by International Association of Diabetes in Pregnancy Study Group’s Criteria. Diabetes Research and Clinical Practice, 183, Article 109050.
https://doi.org/10.1016/j.diabres.2021.109050
[5] Gao, C., Sun, X., Lu, L., Liu, F. and Yuan, J. (2018) Prevalence of Gestational Diabetes Mellitus in Mainland of China: A Systematic Review and Meta‐Analysis. Journal of Diabetes Investigation, 10, 154-162.
https://doi.org/10.1111/jdi.12854
[6] Clarke, E., Cade, T.J. and Brennecke, S. (2020) Early Pregnancy Screening for Women at High-Risk of GDM Results in Reduced Neonatal Morbidity and Similar Maternal Outcomes to Routine Screening. Journal of Pregnancy, 2020, Article 9083264.
https://doi.org/10.1155/2020/9083264
[7] Burlina, S., Dalfrà, M.G., Belloni, P., Ottanelli, S., Mecacci, F., Mello, G., et al. (2022) Can the First Fasting Plasma Glucose Test in Pregnancy Predict Subsequent Gestational Complications? International Journal of Endocrinology, 2022, Article 9633664.
https://doi.org/10.1155/2022/9633664
[8] Ozgu-Erdinc, A.S., Sert, U.Y., Kansu-Celik, H., Moraloglu Tekin, O. and Engin-Ustun, Y. (2019) Prediction of Gestational Diabetes Mellitus in the First Trimester by Fasting Plasma Glucose Which Cutoff Is Better? Archives of Physiology and Biochemistry, 128, 195-199.
https://doi.org/10.1080/13813455.2019.1671457
[9] Tong, J., Wu, L., Chen, Y., Guan, X., Tian, F., Zhang, H., et al. (2021) Fasting Plasma Glucose in the First Trimester Is Related to Gestational Diabetes Mellitus and Adverse Pregnancy Outcomes. Endocrine, 75, 70-81.
https://doi.org/10.1007/s12020-021-02831-w
[10] Wang, L., Li, W., Zhang, S., Liu, H., Li, W., Hu, T., et al. (2021) Association of Leukocyte Counts in the First Trimester with Glucose Intolerance during Pregnancy. Journal of Diabetes Investigation, 13, 191-200.
https://doi.org/10.1111/jdi.13633
[11] 柯乳香. 妊娠早期甘油三酯、白细胞联合检测对妊娠期糖尿病的预测价值[J]. 中外医学研究, 2023, 21(18): 64-68.
[12] Salciccia, S., Frisenda, M., Bevilacqua, G., Viscuso, P., Casale, P., De Berardinis, E., et al. (2024) Prognostic Role of Platelet-to-Lymphocyte Ratio and Neutrophil-to-Lymphocyte Ratio in Patients with Non-Metastatic and Metastatic Prostate Cancer: A Meta-Analysis and Systematic Review. Asian Journal of Urology, 11, 191-207.
https://doi.org/10.1016/j.ajur.2023.01.002
[13] Misirlioglu, N.F., Uzun, N., Ozen, G.D., Çalik, M., Altinbilek, E., Sutasir, N., et al. (2024) The Relationship between Neutrophil-Lymphocyte Ratios with Nutritional Status, Risk of Nutritional Indices, Prognostic Nutritional Indices and Morbidity in Patients with Ischemic Stroke. Nutrients, 16, Article 1225.
https://doi.org/10.3390/nu16081225
[14] Wang, J., Zhu, Q., Cheng, X., Sha, C. and Cui, Y. (2020) Clinical Significance of Neutrophil-Lymphocyte Ratio and Monocyte-Lymphocyte Ratio in Women with Hyperglycemia. Postgraduate Medicine, 132, 702-708.
https://doi.org/10.1080/00325481.2020.1764235
[15] Fagninou, A., Nekoua, M.P., Fiogbe, S.E.M., Moutaïrou, K. and Yessoufou, A. (2022) Predictive Value of Immune Cells in the Risk of Gestational Diabetes Mellitus: A Pilot Study. Frontiers in Clinical Diabetes and Healthcare, 3, Article 819164.
https://doi.org/10.3389/fcdhc.2022.819164
[16] 凌思思. 妊娠早期炎症因子与妊娠期糖尿病发生的相关性初步探讨[J]. 中华妇产科杂志, 2020, 55(5): 333-337.
[17] 卢红梅, 葛志平, 孙丽洲. 非贫血孕妇妊娠早期红细胞参数与妊娠期糖尿病的关系[J]. 南京医科大学学报(自然科学版), 2013, 33(9): 1247-1250.
[18] Young, M.F., Oaks, B.M., Tandon, S., Martorell, R., Dewey, K.G. and Wendt, A.S. (2019) Maternal Hemoglobin Concentrations across Pregnancy and Maternal and Child Health: A Systematic Review and Meta‐Analysis. Annals of the New York Academy of Sciences, 1450, 47-68.
https://doi.org/10.1111/nyas.14093
[19] Sissala, N., Mustaniemi, S., Kajantie, E., Vääräsmäki, M. and Koivunen, P. (2022) Higher Hemoglobin Levels Are an Independent Risk Factor for Gestational Diabetes. Scientific Reports, 12, Article No. 1686.
https://doi.org/10.1038/s41598-022-05801-y
[20] Shaarbaf Eidgahi, E., Nasiri, M., Kariman, N., Safavi Ardebili, N., Salehi, M., Kazemi, M., et al. (2022) Diagnostic Accuracy of First and Early Second Trimester Multiple Biomarkers for Prediction of Gestational Diabetes Mellitus: A Multivariate Longitudinal Approach. BMC Pregnancy and Childbirth, 22, Article No. 13.
https://doi.org/10.1186/s12884-021-04348-6
[21] Sulhariza, H.Z., Zalilah, M.S. and Geeta, A. (2023) Maternal Hemoglobin Change from Early Pregnancy to Second Trimester Is Associated with Risk of Gestational Diabetes Mellitus: A Retrospective Cohort Study. Frontiers in Nutrition, 10, Article 1197485.
https://doi.org/10.3389/fnut.2023.1197485
[22] Wang, C., Lin, L., Su, R., Zhu, W., Wei, Y., Yan, J., et al. (2018) Hemoglobin Levels during the First Trimester of Pregnancy Are Associated with the Risk of Gestational Diabetes Mellitus, Pre-Eclampsia and Preterm Birth in Chinese Women: A Retrospective Study. BMC Pregnancy and Childbirth, 18, Article No. 263.
https://doi.org/10.1186/s12884-018-1800-7
[23] Valero, P., Cornejo, M., Fuentes, G., Wehinger, S., Toledo, F., van der Beek, E.M., et al. (2023) Platelets and Endothelial Dysfunction in Gestational Diabetes Mellitus. Acta Physiologica, 237, e13940.
https://doi.org/10.1111/apha.13940
[24] Guglielmini, G., Falcinelli, E., Piselli, E., Mezzasoma, A.M., Tondi, F., Alfonsi, L., et al. (2024) Gestational Diabetes Mellitus Is Associated with in vivo Platelet Activation and Platelet Hyperreactivity. American Journal of Obstetrics and Gynecology, in Press.
https://doi.org/10.1016/j.ajog.2024.04.003
[25] Huang, Y., Chen, X., You, Z.S., Gu, F., Li, L., Wang, D., et al. (2020) The Value of First-Trimester Platelet Parameters in Predicting Gestational Diabetes Mellitus. The Journal of Maternal-Fetal & Neonatal Medicine, 35, 2031-2035.
https://doi.org/10.1080/14767058.2020.1774543
[26] Colak, E., Ozcimen, E.E., Ceran, M.U., Tohma, Y.A. and Kulaksızoglu, S. (2019) Role of Mean Platelet Volume in Pregnancy to Predict Gestational Diabetes Mellitus in the First Trimester. The Journal of Maternal-Fetal & Neonatal Medicine, 33, 3689-3694.
https://doi.org/10.1080/14767058.2019.1583730
[27] 薛爱琴, 惠晶, 陈艳梅, 等. 产妇孕早期肝脏功能水平对GDM的预测价值[J]. 河北医药, 2018, 40(17): 2591-2594.
[28] Zhao, W., Zhang, L., Zhang, G., Varkaneh, H.K., Rahmani, J., Clark, C., et al. (2019) The Association of Plasma Levels of Liver Enzymes and Risk of Gestational Diabetes Mellitus: A Systematic Review and Dose-Response Meta-Analysis of Observational Studies. Acta Diabetologica, 57, 635-644.
https://doi.org/10.1007/s00592-019-01458-8
[29] 高端, 林利霞, 钟春蓉, 等. 孕早期肝酶与妊娠期糖尿病关系的前瞻性队列研究[J]. 营养学报, 2020, 42(3): 224-228.
[30] Wu, P., Wang, Y., Ye, Y., Yang, X., Huang, Y., Ye, Y., et al. (2023) Liver Biomarkers, Lipid Metabolites, and Risk of Gestational Diabetes Mellitus in a Prospective Study among Chinese Pregnant Women. BMC Medicine, 21, Article No. 150.
https://doi.org/10.1186/s12916-023-02818-6
[31] Chen, X., Chen, H., Zhang, Y., Jiang, Y., Wang, Y., Huang, X., et al. (2022) Maternal Liver Dysfunction in Early Pregnancy Predisposes to Gestational Diabetes Mellitus Independent of Preconception Overweight: A Prospective Cohort Study. BJOG: An International Journal of Obstetrics & Gynaecology, 129, 1695-1703.
https://doi.org/10.1111/1471-0528.17117
[32] Cui, L., Yang, X., Li, Z., Gao, Y., Zhang, Z., Xu, D., et al. (2024) Elevated Liver Enzymes in the First Trimester Are Associated with Gestational Diabetes Mellitus: A Prospective Cohort Study. Diabetes/Metabolism Research and Reviews, 40, e3799.
https://doi.org/10.1002/dmrr.3799
[33] 代延朋, 刘军杰, 袁恩武, 等. 妊娠早期肝肾代谢指标水平与妊娠期糖尿病的相关性[J]. 标记免疫分析与临床, 2018, 25(12): 1781-1784.
[34] 王凤玲, 周义文, 王亮. 孕早期白细胞计数、肝功指标检测与妊娠期糖尿病发生的相关性分析[J]. 中国计划生育和妇产科, 2017, 9(12): 41-44, 52.
[35] Feng, P., Wang, G., Yu, Q., Zhu, W. and Zhong, C. (2020) First‐Trimester Blood Urea Nitrogen and Risk of Gestational Diabetes Mellitus. Journal of Cellular and Molecular Medicine, 24, 2416-2422.
https://doi.org/10.1111/jcmm.14924
[36] Li, X., Niu, Z., Bai, L. and Lu, Q. (2024) New Perspective on First-Trimester Serum Uric Acid Level in Predicting the Risk of Gestational Diabetes Mellitus. Scientific Reports, 14, Article No. 804.
https://doi.org/10.1038/s41598-024-51507-8
[37] Duo, Y., Song, S., Zhang, Y., Qiao, X., Xu, J., Zhang, J., et al. (2023) Relationship between Serum Uric Acid in Early Pregnancy and Gestational Diabetes Mellitus: A Prospective Cohort Study. Endocrine, 83, 636-647.
https://doi.org/10.1007/s12020-023-03544-y
[38] Nikparast, A., Rahmani, J., Bagheri, R., Mohammadpour, S., Shadnoosh, M., Wong, A., et al. (2023) Maternal Uric Acid Levels and Risk of Gestational Diabetes Mellitus: A Systematic Review and Dose-Response Meta‐Analysis of Cohort Studies Including 105,380 Participants. Journal of Diabetes Investigation, 14, 973-984.
https://doi.org/10.1111/jdi.14022
[39] Ghanei, A., Mohammadzade, G., Gholami Banadkoki, M. and Meybodi, A.E. (2023) The Predictive Role of Serum Uric Acid Levels before Pregnancy in the Development of Gestational Diabetes Mellitus. Diabetology International, 15, 123-129.
https://doi.org/10.1007/s13340-023-00662-w
[40] 刘青巧. 妊娠期糖尿病患者联合检测凝血功能及血清同型半胱氨酸的临床价值[J]. 中国药物与临床, 2021, 21(11): 1963-1964.
[41] 柯冬香, 王丹, 李晓丹, 等. 低分子肝素对妊娠糖尿病伴凝血功能异常患者的疗效及母婴结局的影响[J]. 中国卫生检验杂志, 2021, 31(5): 595-598, 602.
[42] 高佳, 张方方, 黄绡珕. 基于母体凝血功能和糖脂代谢指标的预测模型在妊娠期糖尿病早期诊断中的应用价值[J]. 检验医学与临床, 2023, 20(7): 876-879.
[43] Zheng, Y., Hou, W., Xiao, J., Huang, H., Quan, W. and Chen, Y. (2022) Application Value of Predictive Model Based on Maternal Coagulation Function and Glycolipid Metabolism Indicators in Early Diagnosis of Gestational Diabetes Mellitus. Frontiers in Public Health, 10, Article 850191.
https://doi.org/10.3389/fpubh.2022.850191
[44] Wang, Y., Wu, P., Huang, Y., Ye, Y., Yang, X., Sun, F., et al. (2022) BMI and Lipidomic Biomarkers with Risk of Gestational Diabetes in Pregnant Women. Obesity, 30, 2044-2054.
https://doi.org/10.1002/oby.23517
[45] Wang, Y., Huang, Y., Wu, P., Ye, Y., Sun, F., Yang, X., et al. (2021) Plasma Lipidomics in Early Pregnancy and Risk of Gestational Diabetes Mellitus: A Prospective Nested Case-Control Study in Chinese Women. The American Journal of Clinical Nutrition, 114, 1763-1773.
https://doi.org/10.1093/ajcn/nqab242
[46] Zhao, D., Yuan, N., Sun, J., Zhao, X. and Zhang, X. (2024) Establishment of Pregnancy-Specific Lipid Reference Intervals in Pregnant Women in a Single-Centre and Assessment of the Predictive Value of Early Lipids for Gestational Diabetes Mellitus: A Prospective Cohort Study. Endokrynologia Polska, 75, 192-198.
https://doi.org/10.5603/ep.98554
[47] dos Santos-Weiss, I.C.R., Réa, R.R., Fadel-Picheth, C.M.T., Rego, F.G.M., Pedrosa, F.d.O., Gillery, P., et al. (2013) The Plasma Logarithm of the Triglyceride/HDL-Cholesterol Ratio Is a Predictor of Low Risk Gestational Diabetes in Early Pregnancy. Clinica Chimica Acta, 418, 1-4.
https://doi.org/10.1016/j.cca.2012.12.004
[48] Gao, Y., Hu, Y. and Xiang, L. (2023) Remnant Cholesterol, but Not Other Cholesterol Parameters, Is Associated with Gestational Diabetes Mellitus in Pregnant Women: A Prospective Cohort Study. Journal of Translational Medicine, 21, Article No. 531.
https://doi.org/10.1186/s12967-023-04322-0
[49] Borna, S., Ashrafzadeh, M., Ghaemi, M., Eshraghi, N., Hivechi, N. and Hantoushzadeh, S. (2023) Correlation between PAPP-A Serum Levels in the First Trimester of Pregnancy with the Occurrence of Gestational Diabetes, a Multicenter Cohort Study. BMC Pregnancy and Childbirth, 23, Article No. 847.
https://doi.org/10.1186/s12884-023-06155-7
[50] Tenenbaum-Gavish, K., Sharabi-Nov, A., Binyamin, D., Møller, H.J., Danon, D., Rothman, L., et al. (2020) First Trimester Biomarkers for Prediction of Gestational Diabetes Mellitus. Placenta, 101, 80-89.
https://doi.org/10.1016/j.placenta.2020.08.020
[51] Yanachkova, V.E., Staynova, R., Bochev, I. and Kamenov, Z. (2021) Potential Role of Biochemical Placentation Markers—Pregnancy Associated Plasma Protein-A and Human Chorionic Gonadotropin for Early Gestational Diabetes Screening—A Pilot Study. Ginekologia Polska, 93, 405-409.
https://doi.org/10.5603/gp.a2021.0129
[52] Yildiz, A., Yozgat, S.T., Cokmez, H. and Yildiz, F.Ş. (2022) The Predictive Value of the First Trimester Combined Test for Gestational Diabetes Mellitus. Ginekologia Polska, 94, 395-399.
https://doi.org/10.5603/gp.a2022.0036
[53] 欧敏, 伍志灵, 王雪, 等. 孕早期妊娠相关血浆蛋白A等多指标联合预测妊娠期糖尿病的价值[J]. 实用妇产科杂志, 2024, 40(1): 69-72.
[54] Niu, Z.-R., Bai, L.-W. and Lu, Q. (2023) Establishment of Gestational Diabetes Risk Prediction Model and Clinical Verification. Journal of Endocrinological Investigation, 47, 1281-1287.
https://doi.org/10.1007/s40618-023-02249-3
[55] Zhang, H., Dai, J., Zhang, W., Sun, X., Sun, Y., Wang, L., et al. (2023) Integration of Clinical Demographics and Routine Laboratory Analysis Parameters for Early Prediction of Gestational Diabetes Mellitus in the Chinese Population. Frontiers in Endocrinology, 14, Article 1216832.
https://doi.org/10.3389/fendo.2023.1216832
[56] Lin, Q. and Fang, Z. (2023) Establishment and Evaluation of a Risk Prediction Model for Gestational Diabetes Mellitus. World Journal of Diabetes, 14, 1541-1550.
https://doi.org/10.4239/wjd.v14.i10.1541
[57] Basil, B., Mba, I.N., Myke-Mbata, B.K., Adebisi, S.A. and Oghagbon, E.K. (2024) A First Trimester Prediction Model and Nomogram for Gestational Diabetes Mellitus Based on Maternal Clinical Risk Factors in a Resource-Poor Setting. BMC Pregnancy and Childbirth, 24, Article No. 346.
https://doi.org/10.1186/s12884-024-06519-7
[58] Wei, Y., He, A., Tang, C., Liu, H., Li, L., Yang, X., et al. (2022) Risk Prediction Models of Gestational Diabetes Mellitus before 16 Gestational Weeks. BMC Pregnancy and Childbirth, 22, Article No. 889.
https://doi.org/10.1186/s12884-022-05219-4
[59] Tranidou, A., Tsakiridis, I., Apostolopoulou, A., Xenidis, T., Pazaras, N., Mamopoulos, A., et al. (2023) Prediction of Gestational Diabetes Mellitus in the First Trimester of Pregnancy Based on Maternal Variables and Pregnancy Biomarkers. Nutrients, 16, Article 120.
https://doi.org/10.3390/nu16010120