APP  >> Vol. 3 No. 2 (March 2013)

    螺旋线圈的分布电容及其磁电容效应
    Distributed Capacitance of Spiral Coils and Its Magneto-Capacitance Effect

  • 全文下载: PDF(537KB) HTML    PP.44-49   DOI: 10.12677/APP.2013.32009  
  • 下载量: 2,719  浏览量: 10,917   国家自然科学基金支持

作者:  

王莹莹,罗小彬,张 颖,张 宁:南京师范大学磁电子学实验室,江苏省光电技术重点实验室,南京;
高建森:江苏省宿迁学院基础教学部,宿迁

关键词:
空心线圈分布电容磁电容 Spiral Coil; Distributed Capacitance; Magnetocapacitance

摘要:

本文对空心螺旋线圈的分布电容及阻抗特性进行了理论和实验研究,测量了螺旋线圈分布电容的频率特性及其与线圈匝数和绕线方式的依赖关系,以及螺旋线圈阻抗随匝数的变化规律。观察到当线圈匝数大于10时,分布电容的数值与匝数和绕线方式几近无关。通过测量线圈的(器件型)磁电容效应发现,线圈的分布电容与线圈材质有关,其机理可从趋肤效应得到解释。从线圈的等效电路出发,结合趋肤效应推出分布电容及阻抗的表达式。分析显示,线圈的分布电容主要来源于匝间电容。

The characteristics of distributed capacitance and impedance of hollow coils are studied theoretically and experimentally. The frequency characteristic, the number of turns and winding mode dependent capacitor of the coil, and the impedance versus number of turns of hollow coils have been measured, respectively. The distributed capacitance has been observed almost irrelevant to the number of turns and the winding ways of the coils when the number of turns is greater than 10. By measuring the magneto-capacitance effect of spiral coil, it was found that the distributed capacitance of coil relates to the coil material, suggesting the influence of skin effect. From the coil equivalent circuit, combining with the skin effect, an approximate formula of distributed capacitance and impedance have been worked out. Analysis showed that the distributed capacitance of coil mainly originates from line capacitance and the capacitance between turns.







文章引用:
王莹莹, 高建森, 罗小彬, 张颖, 张宁. 螺旋线圈的分布电容及其磁电容效应[J]. 应用物理, 2013, 3(2): 44-49. http://dx.doi.org/10.12677/APP.2013.32009

参考文献

[1] A. P. Chattock. On a magnetic potentiometer. Philosophical Maga- zine, 1887, 24(146): 94-96.
[2] W. Rogowski, W. Steinhaus. Die messung dermagnetischen spannung (the measurements of magnetic potential). Archiv für Elektrotechnik, 1912, 1(4): 141-150.
[3] G. Dehmel. Magnetic field sensors: Induction coil (search-coil) sensors—A com-prehensive survey. New York: VCH, 1989: 205- 254.
[4] C. Cavoit. Closed loop applied to magnetic measurements in the range of 0.1 - 50 MHz. Review of Scientific Instruments, 2006, 77(6): Article ID: 064703.
[5] S. Tumanski. Induction coil sensors—A review. Meas-urement Science and Technology, 2007, 18(3): R31-R46.
[6] P. Mur-gatroyd. Progress with Rogowski coils. Chicago: EMCWA Conference, 1996: 369-374.
[7] G. H. Shirkoohi, A. S. Kontopoulos. Computation of magnetic field in Rogowski-Chattock potentiometer compensated magnetic tester. Journal of Magnetism and Magnetic Materials, 1994, 133(1-3): 587-590.
[8] 彭春燕, 周有庆, 龚伟, 曹志辉. 新型螺旋管空心线圈电流互感器[J]. 电力系统及其自动化学报, 2009, 21(4): 53-57.
[9] I. Nishi, K. Yanagisawa and T. Toshima. Spiral resonator for PCM-400 M system. Review of the Electrical Communication Laboratory, 1976, 24(9-10): 776-786.
[10] 黄子平, 秦玲, 张良, 荆晓兵. 含磁芯线圈动态电感计算[J]. 强激光与粒子束, 2007, 19(1): 125-128.
[11] 冯书谊, 周勇, 周志敏, 向毅. 平面磁芯螺旋结构微电感的性能研究[J]. 电子元件与材料, 2009, 28(2): 48-50.
[12] 毛明, 黄念磁. 铁氧体磁芯电感的设计[J]. 电工技术杂志, 2000, 19(12): 30-33.
[13] Z. F. Jiang, P. S. Excell and Z. M. Hejazi. Calculation of distributed capacitances of spiral resonators. IEEE Transactions on Microwave Theory and Techniques, 1997, 45(1): 139-142.
[14] J. S. Wei. Distributed capacitance of planar electrodes in optic and acoustic surface wave devices. IEEE Journal of Quantum Electronics, 1977, 13(4): 152-158.
[15] 王昕, 王宗欣, 袁晓军. 圆形螺旋线圈自感和分布电容的计算[J]. 固体电子学研究与进展, 2000, 20(4): 425-431.
[16] Z. Jiang, P. S. Excell and Z. M. Hejazi. Calculation of distributed capacitances of spiral resonators. IEEE Transactions on Microwave Theory and Technology, 1997, 45(1): 139-142.
[17] 郭华, 电感磁芯线圈间分布电容的研究与测试方法[J]. 微电机, 2010, 43(9):109-112.
[18] 李建兵, 牛忠霞, 周东方, 师宇杰. 电流趋肤效应的二维数值分析[J]. 微电子学与计算机, 2007, 24(1): 9-14.
[19] 鲁百佐, 刘志存. 趋肤效应的实验研究[J]. 物理测试, 2004, 4: 16-17.
[20] N. Xi, C. R. Sullivan. An equivalent complex permeability model for litz-wire windings. Industry Applications Conference, 2005, 3: 2229-2235.