基于ANSYS的基座关键结构件布置优化设计The Optimization of the Layout of Pedestal Key Components Based on ANSYS

• 全文下载: PDF(1348KB)    PP.376-383   DOI: 10.12677/MET.2019.85043
• 下载量: 181  浏览量: 723

The strength of the load-bearing parts such as the pedestal is directly related to the safety of the mechanical system. Taking the ribbed pedestal structure as the research object, the design position of the key ribs has a great influence on the strength of the pedestal. Based on the ANSYS Workbench, taking the rib position parameters as the optimization variables, and taking the structural strength and stiffness as the optimization targets, the rib position is optimized to realize the rational layout of the pedestal ribs on the basis of ensuring the structural strength. The results show that the max equivalent stress and the max deformation are decreased by optimizing the position of ribs.

1. 引言

2. 基座结构静力学分析

1-The vertical rib; 2-The bottomplate; 3-The faceplate; 4-Thehorizontal plate1—纵筋；2—底板；3—面板；4—横筋

Figure 1. The composition of stiffened base structure

3. 关键筋位置优化模型构建

3.1. 优化变量参数设定

(a)(b)

Figure 2. The comparision of the equivalent stress of stiffened base structure. (a) The equivalent stress of the first plan of rib layout; (b) The equivalent stress of the second plan of rib layout

(a)(b)

Figure 3. The comparision of the max strain of stiffened base structure. (a) The strain of the first plan of rib layout; (b) The strain of the second plan of rib layout

Figure 4. The optimization of stiffened base composition

$\text{P}=\left[\text{P}1\text{P}2\text{P}3\right]$ (1)

$\text{P}1=\left(\text{L}2+2*\text{C}1\right)/2$ (2)

$\text{P}1=\left(\text{W}-2*\text{L}3-2*\text{C}1\right)/2$ (3)

$\text{P}2=\text{P}3$ (4)

P2—筋2位置参数；

P3—筋3位置参数；

L2—筋2长度；

L3—筋3长度；

C1—确定量，表征筋1厚度尺寸约束；

W—确定量，表征基座宽度尺寸约束。

3.2. 优化目标选取

$\text{in}\left\{\begin{array}{c}f1\left(P\right)f1\left(P\right)<\left[\sigma \right]\\ f2\left(P\right)f2\left(P\right) (5)

$\left[\sigma \right]$ —结构许用应力；

$f2\left(P\right)$ —基座最大变形量；

x—结构允许最大变形量。

3.3. 优化结果

Figure 5. The sensitivity analysis result of rib layout parameters

Table 1. The optimization solution

(a)(b)

Figure 6. The max equivalent stress and the strain of the optimized of stiffened base. (a) The max equivalent stress; (b) The max strain

Table 2. The comparison of optimization result

4. 结论

NOTES

*通讯作者。

 [1] 徐建. 当前形势下我国重型机械行业发展的思考[J]. 重型机械, 2014(5): 1-4. [2] 黄海燕, 刘晓卫, 姜树卫. 基于疲劳强度的主机基座优化设计[J]. 中国造船, 2010, 51(3): 101-106. [3] 陈凯, 龙连春. 某潜水器承载框架结构优化设计[C]//北京力学会. 北京力学会第18届学术年会论文集. 北京: 北京力学会, 2012: 345-346. [4] 周自阳, 洪荣晶, 袁鸿. 成形铣齿机床立柱筋板结构优化设计[J]. 机械设计与制造, 2012(11): 149-151. [5] 虞自奋, 褚亮, 时立军. 框架式液压相相架立柱筋板位置优化[J]. 工程机械, 2008, 39(7): 35-39. [6] Bator, M. and Nienieewski, M. (2012) Detection of Cancerous Masses in Mammograms by Template Matching: Optimization of Template Brightness Distribution by Means of Evolutionary Algorithm. Journal of Digital Imaging, 25, 162-172. https://doi.org/10.1007/s10278-011-9402-1 [7] 玄光男, 程润伟. 遗传算法与工程优化[M]. 北京: 清华大学出版社有限公司, 2004. [8] Kaveh, A. and Talatahari, S. (2009) Particle Swarm Optimizer, Ant Colony Strategy and Harmony Search Scheme Hybridized for Optimization of Truss Structures. Computers & Structures, 87, 267-283. https://doi.org/10.1016/j.compstruc.2009.01.003 [9] 黄席樾, 胡小兵. 现代智能算法理论及应用[M]. 北京: 科学出版社, 2005. [10] 刘晓东, 陈鑫玉, 唐俊杰, 等. 基于ANSYS的薄壁结构件的多目标铣削参数优化[J]. 现代制造工程, 2014(9): 90-94. [11] 彭细荣, 向春霞. 基于ANSYS优化模块的大体积混凝土热学参数识别[J]. 湖南城市学院学报, 2014, 23(4): 1-5. [12] 王野平, 李晓国, 钱海宁. 基于ANSYS Workbench的多层热压机框架结构分析及优化[J]. 设计与研究, 2018(2): 77-81.