实数不可数之谬与超越数实数复数向量数皆可数的证明
    Real Set is the Fault of Uncountable Set and the Proof that Transcendental Set, Real Set, Complex Set and Vector Set are Countable Sets

  • 全文下载: PDF(531KB)    PP.1-17   DOI: 10.12677/HANSPrePrints.2019.41024  
  • 下载量: 360  浏览量: 2,017  

作者:  

张先胜:重庆市合川区农业农村委员会,重庆市 合川区,中国

关键词:
集合论闭区间套方法对角线方法可数集合证明Settheory Closed Interval Nesting Method Diagonalmethod Countableset Prove

摘要:

康托用闭区间套定理和对角线方法分别证明了实数不可数,但一直以来备受争议。深刻剖析了此两种证法并揭示了其错误实质,用闭区间套定理证明实数不可数构成语形语义悖论,用对角线方法证明实数不可数犯了偷换概念、以偏概全、不当推断的逻辑错误。发现并构造了体现数学特点的数形结合、逻辑严密的方法:可能取数滚动轮排无限列表图示法、可能取数有限列表图示法、可能取数圆形数盘图示法,和拓广连分数法、代数数生成超越数法、拓广康托方程指标法,分别证明了超越数集、实数集、复数集、向量数集都是可数集。

Cantor proves that real numbers are not countable by using closed interval nesting theorem and diagonal method, respectively. But it has always been controversial. This paper deeply analyses these two kinds of proofs and reveals the essence of their mistakes. Using the closed interval nest theorem to prove that the set of real numbers is not countable constitutes the paradox of linguistic form and semantics. Using the diagonal method to prove that the real number is uncountable makes a logical mistake of changing concepts secretly, generalizing them partially and reasoning inappropriately. We have found and constructed the method of combining numbers and graphics, which embody the characteristics of mathematics, with strict logic. An Infinite List Graphic Method for Rolling Wheel Arrangements with Possible Numbers、Graphic Method of Limited List of Possible Numbers, Diagrammatic method of circle number disc with possible number,and Extended Continuous Fraction Method、Algebraic Number Generation Transcendental Number Method、Extending the Index Method of Cantor Equation,It is proved that the transcendental set, the real set, the complex set and the vector set are all countable sets.

文章引用:
张先胜. 实数不可数之谬与超越数实数复数向量数皆可数的证明[J]. 汉斯预印本, 2019, 4(1): 1-17. https://doi.org/10.12677/HANSPrePrints.2019.41024

参考文献

[1] 方嘉琳编著,《集合论》[M],吉林:吉林人民出版社,1982:92-93.
[2] [美]克林著,莫绍揆译,《元数学导论》[M],北京:科学出版社,1985:4-6.
[3] 郭世铭著,《递归论导论》[M],北京:中国社会科学出版社,1998:55-114.
[4] 张家龙著,《数理逻辑发展简史——从莱布尼茨到哥德尔》[M],北京:社会科学文献出版社,1993:342-367,372-438.
[5] [美]王浩著,康宏逵译,《哥德尔》[M],上海:上海世纪出集团译文出版社,2002:350-362.
[6] [美]侯世达著,郭维德等译,《哥德尔、艾舍尔、巴赫——集异璧之大成》[M],北京:商务印书馆出版社,1996:31-32,45-47,95-99,268-303,341-356,538-581.
[7] 乐秀成编译改写,《GEB——一条永恒的金带》[M],成都:四川人民出版社,1984:43-120,139-148.
[8] 沈卫国,“康托对角线真的证明实数不可数了吗?”,《天津成人高等学校联合学报》[J],200505(3):85-91.
[9] 沈卫国,“论实数(连续统)的可数性及其相关问题”,《天津职业院校联合学报》[J],200609(5):11-121.
[10] 沈卫国,“论康托对角线法的局限性与数学、逻辑学中的一些基础性问题”,《天津职业院校联合学报》[J],200805(3):114-123.
[11] 邢滔滔,“无尽的对角线”,《科学文化评论》[J],2014(3):5-20.
[12] 欧阳耿,“罗素悖论与康托在集合论中的两个失误”,《贵州师范大学学报(自然科学版)》[J],200208(3):81-84.
[13] 欧阳耿,“康托在集合论中的两个失误”,《烟台师范学院学报(自然科学版)》[J],200104(4):284-287.
[14] 欧阳耿,“康托实数集合不可数证明中的四种错误探析”,《喀什师范学院学报》[J],201111(6):17-21.
[15] 温邦彦,“什么是康托的不可列集合?——无穷理论的新方案(3)”,《重庆工学院学报(自然科学版)》[J],200911(11):145-153.
[16] [俄]菲赫金哥尔茨著,杨弢亮、叶彦廉译,《微积分学教程》(第一卷)(第8版)[M],北京:高等教育出版社,2006:64-65.
[17] 常庚哲,史济怀编,《数学分析教程》(上册)[M],北京:高等教育出版社,2003:28-29.
[18] 张建军,“对角线方法、对角线引理与悖论研究”[J],《自然辩证法研究》1997,(13)12:11-15.
[19] 张建军,黄展骥著,《矛盾与悖论新论》[M],石家庄:河北教育出版社,1998:146-179.
[20] 王建午,曹之江,刘景麟编,《实数构造理论》[M],北京:人民教育出版社,1981:115-120.
[21] 高建福著,《无穷级数与连分数》[M],合肥:中国科学技术大学出版社,2005:103-138.
[22] 于秀源,《超越数论基础》,[M],哈尔滨:哈尔滨工业出版社,2011:32-46,80.
[23] 朱尧辰、徐广善,《超越数引论》,[M],北京:科学出版社,2003:39,84.
[24] “10000个科学难题”数学编委会,《10000个科学难题》(数学卷)[M]。北京:科学出版社,2009:11.