AEP  >> Vol. 7 No. 1 (February 2017)

    基于标准遗传算法的地下水污染源溯源方法
    A Groundwater Pollution Source Identification Method Based on the Simple Genetic Algorithm

  • 全文下载: PDF(662KB) HTML   XML   PP.35-40   DOI: 10.12677/AEP.2017.71005  
  • 下载量: 788  浏览量: 1,924   国家自然科学基金支持

作者:  

李景林:南京水利科学研究院,江苏 南京;
龙玉桥,吴春勇:南京水利科学研究院,江苏 南京;南京瑞迪建设科技有限公司,江苏 南京

关键词:
地下水污染溯源标准遗传算法Groundwater Pollution Identification Simple Genetic Algorithm

摘要:

本文将标准遗传算法应用于确定一维均质含水层中污染源位置,利用数值实验分析污染源预估域对溯源计算时间、均值及方差的影响。研究发现,基于标准遗传算法的溯源方法可以在文中的理想算例中取得较好的溯源效果。溯源时间在整体上呈现溯源问题越复杂溯源时间越长的规律。延污染物运移主方向上,污染溯位置的变化对溯源结果的影响小于垂直于污染物运移主方向上的影响,而溯源方法陷入局部最优的可能要大于在垂直于污染物运移主方向上陷入局部最优的可能。

The simple genetic algorithm is applied to find the pollution source location in groundwater. Numerical test is used to find the influence of estimated pollution range on the time consuming, mean, and standard deviation of identification result. The bigger the estimated range is, the more time is consumed. A slight movement of the estimated source in the direction perpendicular to the major migrate direction leads to big bias between the calculated source location and the real location. The chance that optimization model falls into the local optimum location is growing in the major migration direction.

文章引用:
李景林, 龙玉桥, 吴春勇. 基于标准遗传算法的地下水污染源溯源方法[J]. 环境保护前沿, 2017, 7(1): 35-40. https://doi.org/10.12677/AEP.2017.71005

参考文献

[1] 姜建军, 文冬光. 合理开发利用地下水缓解水资源紧缺状况[J]. 中国水利, 2005(13): 36-39.
[2] 新浪网. 数据显示全国城市55%地下水为较差至极差水质[EB/OL]. http://news.sina.com.cn/c/2013-02-22/001726323489.shtml?bsh_bid=195660861, 2013-02-23.
[3] 薛禹群, 张幼宽. 地下水污染防治在我国水体污染控制与治理中的双重意义[J]. 环境科学学报, 2009, 29(3): 474-481.
[4] Sun, A.-Y., Painter, S.L. and Wittmeyer, G.W. (2006) A Constrained Robust Least Squares Approach for Contaminant Source Release History Identification. Water Resources Research, 42, W04414. https://doi.org/10.1029/2005WR004312
[5] Zoi, D. and George, F.P. (2009) Optimal Search Strategy for the Definition of a DNAPL Source. Journal of Hydrology, 376, 542-556. https://doi.org/10.1016/j.jhydrol.2009.07.062
[6] Li, G.-S., Tan, Y.-J., Cheng, J., et al. (2006) Determining Magnitude of Groundwater Pollution Sources by Data Compatibility Analysis. Inverse Problems in Science and Engineering, 14, 287-300. https://doi.org/10.1080/17415970500485153
[7] Milnes, E. and Perrochet, P. (2007) Simultaneous Identification of a Single Pollution Point-Source Location and Contamination Time under Known Flow Field Conditions. Advances in Water Resources, 30, 2439-2446. https://doi.org/10.1016/j.advwatres.2007.05.013
[8] 李功胜, 姚德, 马昱, 杨富贵. 一维溶质运移源(汇)项系数反演的迭代正则化算法[J]. 地球物理学报, 2008, 51(2): 582-588.
[9] Long, Y.-Q., Li, W. and Huang, J. (2012) Advance of Optimization Methods for Identifing Groundwater Pollution Source Properties. Applied Mechanics and Materials, 178, 603-608. https://doi.org/10.4028/www.scientific.net/AMM.178-181.603
[10] Long, Y., Wu, C. and Wang, J. (2014) The Influence of Estimated Pollution Range on the Groundwater Pollution Source Identification Method Based on the Simple Genetic Algorithm. Applied Mechanics and Materials, 587, 836-841. https://doi.org/10.4028/www.scientific.net/AMM.587-589.836
[11] Gorelick, S.M., Evans, B. and Ramson, I. (1983) Identifying Sources of Groundwater Pollution: An Optimization Approach. Water Resources Research, 19, 779-790. https://doi.org/10.1029/WR019i003p00779
[12] Mahar, P.S. and Datta, B. (1997) Optimal Monitoring Network and Ground-Water Pollution Source Identification. Journal of Water Resources Planning and Management, 123, 199-207. https://doi.org/10.1061/(ASCE)0733-9496(1997)123:4(199)
[13] Aral, M.M., Guan, J. and Maslia, M.L. (2001) Identification of Contaminant Source Location and Release History in Aquifers. Journal of Hydrologic Engineering, 6, 225-234. https://doi.org/10.1061/(ASCE)1084-0699(2001)6:3(225)
[14] Yeh, H.D., Chang, T. and Lin, Y. (2007) Groundwater Contaminant Source Identification by a Hybrid Heuristic Approach. Water Resources Research, 43, W09420. https://doi.org/10.1029/2005WR004731
[15] Bharat, T.V., Sivapullaiah, P.V. and Allam, M.M. (2009) Swarm Intelligence Based Inverse Model for Characterization of Groundwater Contaminant Source. Electronic Journal of Geotechnical Engineering, 14, 1-14.