钠离子电池Mo-Nb₂O₅/C负极材料的制备 及性能研究

李鑫月,刘亚婷,李欣欣,苗永霞,杨新丽

河南工业大学化学化工学院,河南 郑州

收稿日期: 2024年3月21日; 录用日期: 2024年5月24日; 发布日期: 2024年5月31日

摘要

采用水热法合成了Mo-Nb₂O₅/C纳米片复合材料,对该材料进行形貌、结构表征和电化学性能测试。结果表明,通过钼掺杂碳复合提高了Nb₂O₅纳米片材料的电子电导率,从而改善了Nb₂O₅材料的电化学性能。3% Mo-Nb₂O₅/C-8复合材料具有最佳的电化学性能,表现出优异的循环稳定性及倍率性能。在电流密度为100 mA g⁻¹、电压范围在0.01~3.0 V的条件下,100周循环后,放电比容量为172.8 mAh g⁻¹,容量保持率为84.9%;在500 mA g⁻¹的高电流密度下,500周循环后,仍有119.2 mAh g⁻¹的放电比容量,容量保持率为76.0%。

关键词

纳米片,Nb₂O₅,钠离子电池,负极材料

Preparation and Performance Study of Mo-Nb₂O₅/C Anode Materials for Sodium-Ion Batteries

Xinyue Li, Yating Liu, Xinxin Li, Yongxia Miao, Xinli Yang

School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou Henan

Received: Mar. 21st, 2024; accepted: May 24th, 2024; published: May 31st, 2024

Abstract

The Mo-Nb₂O₅/C nanosheet materials were prepared by hydrothermal method. Then, the structure and morphology of the Mo-Nb₂O₅/C anode material were analyzed by XRD, SEM, TEM and XPS characterization techniques, and their electrochemical performance for the sodium ion battery was tested and discussed. The results indicated that the electronic conductivity of Nb₂O₅ nano-

sheet materials was improved by molybdenum-doped and carbon composite, thus improving the electrochemical properties of Nb_2O_5 materials. The 3% Mo- $Nb_2O_5/C-8$ composites had the best electrochemical properties. The discharge specific capacity was 172.8 mAh g⁻¹ with a capacity retention rate of 84.9% after 100 cycles at a current density of 100 mA g⁻¹ and a voltage range of 0.01~3.0 V. At a high current density of 500 mA g⁻¹, a discharge specific capacity of 119.2 mAh g⁻¹ was achieved after 500 cycles, with a capacity retention rate of 76.0%.

Keywords

Nanosheets, Nb₂O₅, Sodium-Ion Battery, Anode Material

Copyright © 2024 by author(s) and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/

CC Open Access

1. 引言

在过去的几十年里,锂离子电池(LIBs)在便携式电子产品中占据主导地位。然而,地球上锂资源存储 量少,导致价格昂贵,限制了其发展。因此,有必要寻找一种可以替代锂离子电池的产品。钠离子电池 (SIB)因其成本低、钠资源分布广而具有广泛的应用前景[1]。然而,Na⁺由于半径较大(R_{Na+} = 1.02 Å >R_{Li+} = 0.76 Å),导致钠离子电池的电荷存储和循环稳定性能较差。因此,寻找适宜于 Na⁺嵌入脱出的嵌入型化 合物显得至关重要。Nb₂O₅ 材料作为一种典型的嵌入性负极材料,不仅在非水电解质中具有良好的嵌/脱 反应和赝电容特性[2] [3],还具有开放式框架和分层结构,允许离子在整个 *a-b* 平面快速运输,进而产生 200 mAh g⁻¹的高理论比容量[4]。因此,Nb₂O₅ 材料也被认为是一种非常有应用前景的钠离子电池负极材 料。但由于 Nb₂O₅ 导电性低,限制了其在大规模储能系统中的实际应用[5] [6]。因此,人们致力于改善 Nb₂O₅ 的电化学性能,如通过形貌控制(如丝状、纤维状、片状和球形)、纳米化和导电剂的掺入等方法。 目前最常用的方法便是与多孔碳、碳基质、石墨烯等碳基材料相结合来提高电池性能[7] [8] [9]。

本文采用水热法制备了钼掺杂碳复合的 Mo-Nb₂O₅/C 纳米片复合材料,对所合成的材料进行结构和 形貌的表征,研究了其作为钠离子电池负极材料的电化学性能。与 Nb₂O₅纳米片材料相比, Mo-Nb₂O₅/C 纳米片复合材料的可逆容量更高,循环稳定性更好。

2. 实验部分

2.1. 试剂和仪器

Table 1. Experimental instruments 表 1. 实验仪器

仪器名称	型号	生产商
X 射线粉末衍射仪	Rigaku MiniFlex 600	日本理学公司
扫描电子显微镜	Sigma 300	德国卡尔蔡司公司
透射电子显微镜	Talos F200X G2	美国赛默飞世尔科技公司
X 射线光电子能谱	Scientific K-Alpha	美国赛默飞世尔科技公司
充放电测试仪	LAND-CT2001A	武汉胜蓝电子科技有限公司
电化学工作站	CHI660E	上海辰华仪器有限公司

五氯化铌(NbCl₅)、五氯化钼(MoCl₅)、四甲基氢氧化铵(25%水溶液)、无水乙醇、葡萄糖和甲醇均为 AR 分析纯,实验过程中均直接使用,无需纯化处理。

本实验所用仪器如表1所示。

2.2. 钼掺杂碳复合 Mo-Nb2O5/C 材料的制备

Mo-Nb₂O₅材料的制备:取3 mmol NbCl₅和一定量的 MoCl₅加入到 36 mL 无水乙醇中,超声、搅拌 使其溶解,得到溶液A;取10 mL 四甲基氢氧化铵溶液加入到 16 mL 去离子水中,得到溶液B。将溶液 B 滴加到溶液A中,搅拌,并将其转移到不锈钢反应釜中,240℃下水热反应12 h。冷却至室温后分别用 无水乙醇和去离子水各离心洗涤三次,将所得沉淀在 80℃下真空干燥 12 h,最后把干燥好的样品在Ar 氛围中 500℃煅烧4 h,冷却至室温得到 3% Mo-Nb₂O₅纳米片材料,其中 Mo 占 Mo 和 Nb 总量的摩尔百 分比为 3%。

3% Mo-Nb₂O₅/C 复合材料的制备:称取 0.3 g 钼铌纳米片前驱体材料加入到 50 mL 蒸馏水中,搅拌 使其混合均匀,然后将不同量的葡萄糖粉末加入该溶液中继续搅拌(Mo-Nb₂O₅和葡萄糖质量比为 1:4、1:8、 1:12),最后将其转移至不锈钢反应釜中,160℃下反应 12 h。冷却至室温后用无水乙醇和去离子水分别离 心洗涤三次,将所得沉淀在 80℃下真空干燥 12 h,Ar 氛围中 500℃煅烧 4 h,待冷却至室温后得到 3% Mo-Nb₂O₅/C-4、3% Mo-Nb₂O₅/C-8 和 3% Mo-Nb₂O₅/C-12。

2.3. 电池组装和电化学性能测试

电极片的制备:将制备好的活性材料、科琴黑(KB)和粘结剂(PVDF 与 N-甲基吡咯烷酮的质量比为 1:19)以质量比 8:1:1 准确称取。然后将活性材料和 KB 在玛瑙研钵中研磨均匀,接着将配置好的 PVDF 与研磨好的混合物移入称量瓶中,最后放入磁子,置于磁力搅拌器上搅拌 24 h,使其充分搅拌均匀。将最后所得浆料转移到铜箔上,使用涂膜棒均匀涂抹在铜箔表面,最后放入鼓风干燥箱中,60℃干燥 12 h,将烘干的膜切成圆形极片以供使用。

扣式电池的组装: 在充满氩气手套箱中,并且箱内水和氧含量均低于 0.1 ppm,组装 CR2016 型扣式 电池。具体步骤为: 先用美工刀去除钠块表面氧化物质,并将其擀成薄片,再裁切成圆片放入负极壳中, 滴入 1~2 滴 1 mol L⁻¹ NaClO₄ (EC:DEC = 1:1 Vol%)电解液,放入隔膜(聚乙烯微孔膜),再放入含有活性材 料的铜箔极片,接着放入 5 mm 厚的金属垫片,最后扣上负极壳。电池从手套箱取出要及时进行封口, 然后静止六个小时再进行各项测试。

电化学性能测试:使用电化学工作站(CHI660E)进行 CV 曲线测试,电压区间为 0.01~3 V。电池的充放电曲线、循环性能和倍率性能均通过 LAND-CT2001A 蓝电测试系统进行测试。

3. 实验结果与讨论

3.1. Nb₂O₅ 负极材料表征

图 1 是不同复合比例的 3% Mo-Nb₂O₅/C 材料的 XRD 测试结果。可以看出,3% Mo-Nb₂O₅ 材料的衍 射峰与纯 Nb₂O₅ 的衍射峰基本一致,没有发现新的衍射峰,这说明 Mo 的掺杂没有生成其它杂相,其主 要衍射峰分别对应 Nb₂O₅ 的(001)、(100)、(002)和(102)晶面。3% Mo-Nb₂O₅ 材料的(001)晶面所对应的衍 射峰向 2θ 角增大方向偏移,由布拉格方程可知,与纯 Nb₂O₅ 相比,3% Mo-Nb₂O₅ 晶面间距减小,说明 Mo 被成功的掺入 Nb₂O₅ 的晶格间距中。3% Mo-Nb₂O₅ 与 C 复合后,样品衍射峰的位置没有发生改变, 但是可以看出复合碳以后,在 2θ 为 28.6 和 46.2°处,衍射峰变得更尖锐,这说明碳被复合进去,分别对 应于无序碳和低石墨化碳的(002)和(100)面[10]。

Figure 1. XRDpatterns of 3% Mo-Nb₂O₅/C with different C content 图 1. 不同碳复合的 3% Mo-Nb₂O₅/C 材料的 XRD 图

图 2显示了 3% Mo-Nb₂O₅和三种复合比例的 Mo-Nb₂O₅/C 纳米片复合材料的 SEM 图。从图 2(a)可以 看出,3% Mo-Nb₂O₅纳米片材料是由大量独立的薄片堆叠在一起呈现出纳米球的结构,小球的直径约为 2~3 µm。从图 2(b)可以看出碳球已经开始在纳米球周围生长,图 2(c)~(d)清晰的显示出随着葡萄糖复合量 增大,碳球变得越来越多,并且碳球粒径也越来越大,当达到一定程度碳球便开始发生团聚,这种情况 不利于 3% Mo-Nb₂O₅/C 纳米片复合材料的电化学性能的提升。与其它四种材料相比 3% Mo-Nb₂O₅/C-8 纳 米片中碳球分散均匀,且碳球粒径合适,有利于缩短 Na⁺的扩散路径,使复合材料的电化学性能更好。

Figure 2. SEM images of 3% Mo-Nb₂O₅/C with different C content 图 2. 不同碳复合的 3% Mo-Nb₂O₅/C 材料的 SEM 图

图 3 展示了 3% Mo-Nb₂O₅和 3% Mo-Nb₂O₅/C-8 纳米片复合材料的不同放大倍数的 TEM 图。从图 3(a) 和图 3(b)可以直观的看到 3% Mo-Nb₂O₅材料由外观透明的超薄纳米片组成,而从图 3(c)和图 3(d)看出碳 球均匀的分布在超薄纳米片上,这有利于电极材料更有效的参与氧化还原反应[11],与 SEM 图一致。图 3(e)为 3% Mo-Nb₂O₅/C-8 纳米片复合材料的选区电子衍射图(SAED),从衍射图谱可以看出,中间部分的

衍射斑点为点阵,但是狭长的衍射斑点,意味着晶体内部存在着缺陷或位错;外围的衍射斑点在同心圆 环上,说明材料具有多晶性。根据选区电子衍射的图谱可以推断,所合成的材料在局部区域具有短程有 序性,但整体来看属于多晶材料[12]。从HRTEM 图像如图 3(f),可以观察到仅有一部分具有清晰晶格条 纹,其晶面间距为 0.39 nm,对应于 Nb₂O₅(001)晶面,与 XRD 结果一致。也可以看出在纳米片周围生长 的是非晶型碳,这些碳的存在可能会进一步增加缺陷位点,为钠离子运输创造更多的离子通道。

Figure 3. (a, b) TEM images of 3% Mo-Nb₂O₅, (c, d) TEM, (c) SAED and (d) HRTEM images of 3% Mo-Nb₂O₅/C-8

图 3. (a, b) 3% Mo-Nb₂O₅ 的透射电镜图; (c, d) 3% Mo-Nb₂O₅/C-8 的透射电镜图, SAED 图和(d) 高分辨透射电镜图

Figure 4. (a) XPS survey spectra of 3% Mo-Nb₂O₅ and 3% Mo-Nb₂O₅/C-8, (b) C1s, (c) O1s, (d) Mo 3d, (e) Nb3dXPS spectra of 3% Mo-Nb₂O₅/C-8

图 4. (a) 3% Mo-Nb₂O₅和 3% Mo-Nb₂O₅/C-8 材料的 XPS 全谱图, 3% Mo-Nb₂O₅/C-8 材料的 XPS 精 细谱图(b) C1s, (c) O1s, (d) Mo 3d, (e) Nb3d

图 4(a)~(e)为 3% Mo-Nb₂O₅和 3% Mo-Nb₂O₅/C-8 材料 XPS 全谱图和 3% Mo-Nb₂O₅/C-8 纳米复合材料 的 C 1s、O 1s、Mo 3d、Nb 3d 的 XPS 精细谱图。从图 4(a)中可以看出 3% Mo-Nb₂O₅和 3% Mo-Nb₂O₅/C-8

材料都含有 C、O、Mo 和 Nb 四种元素,但 3% Mo-Nb₂O₅材料里的碳为污染碳,而 3% Mo-Nb₂O₅/C-8 材 料里的碳为葡萄糖衍生碳。图 4(b)为 C 1s 的 XPS 能谱图,在 284 eV 和 285.4 eV 出现两个特征峰,分别 对应于 C=C 和 C-O 键。图 4(c)为 O 1s XPS 能谱图,经分峰拟合得到两个特征峰,其中 529.8 eV 处的峰 对应于 Nb-O 键中的 O,532.7 eV 处的另一个峰为 C-O 键中的 O [11],C-O 键的产生不仅能验证铌基氧 化物成功与碳复合,而且表明碳与铌基氧化物之间的相互作用是以化学键形式存在的,这有利于保持复 合框架的稳定性。图 4(d)为 Mo 3d XPS 能谱图,231.9 eV 和 235.3 eV 的峰对应 Mo 3d_{5/2}和 Mo 3d_{3/2}轨道, 证明了 Mo 以 Mo⁵⁺的形式存在。图 4(e)为 Nb 3d XPS 能谱图,在 206.8 eV 和 209.5 eV 的两个特征峰对应 Nb₂O₅ 中 Nb 3d_{5/2}和 Nb 3d_{3/2}轨道[13]。

3.2. Nb₂O₅材料的电化学性能表征

图 5(a)显示了不同复合比例的 3% Mo-Nb₂O₅/C 纳米复合材料和 3% Mo-Nb₂O₅材料在 0.01~3 V 电压 区间、100 mA g⁻¹ 电流密度的测试条件下的循环性能, 3% Mo-Nb₂O₅/C-4、3% Mo-Nb₂O₅/C-8、3% Mo-Nb₂O₅/C-12 和 3% Mo-Nb₂O₅材料的第二周放电比容量分别为 157.1、203.6、207.3 和 152.2 mAh g⁻¹, 经过 100 圈循环后,四种材料的放电比容量分别为 99.8、172.8、121.1 和 87.1 mAh g⁻¹,对应的容量保持 率分别为 63.5%、84.9%、58.4%和 57.2%。其中, 3% Mo-Nb₂O₅/C-8 材料具有最高的容量保持率, 虽然 3% Mo-Nb₂O₅/C-12 材料的开始放电比容量较高于 3% Mo-Nb₂O₅/C-8 材料,但是经过 100 圈循环后,容量 衰减较快,这说明 C 复合量过少或过多都不利于材料电化学性能的提升。图 5(b)是四种材料在 500 mA g⁻¹ 的电流密度下的长循环性能图,经过100圈循环后,放电比容量分别为53.0、119.9、91.1和59.7 mAhg⁻¹, 而经过 500 圈长循环后,可逆放电比容量分别为 41.9、119.2、77.0 和 49.8 mAh g⁻¹。其中, 3% Mo-Nb2O5/C-8 材料在高电流密度下经历 500 圈循环后展示了最优异的长循环稳定性能,放电比容量最高且库仑效率接 近于 100%。对 3% Mo-Nb₂O₅材料和不同复合比例的 3% Mo-Nb₂O₅/C 纳米复合材料进行倍率性能测试, 如图 5(c)所示。与其它材料相比,3% Mo-Nb,O./C-8 纳米复合材料显示出更优异的倍率性能。3% Mo-Nb₂O₅/C-8 纳米复合材料在 25、50、100、200、500 和 1000 mA g⁻¹ 的电流密度下的平均放电比容量 为 362.3、274.8、232.2、191.9、150.6 和 120.7 mAh g⁻¹;当电流密度回到初始电流密度 25 mA g⁻¹时,材 料的放电比容量达到 245.8 mAh g⁻¹,恢复到了原来的 68%,证实了 3% Mo-Nb₂O₅/C-8 纳米复合材料的电 化学可逆性较佳。

Figure 5. The cycling capability and the rate capability of 3% Mo-Nb₂O₅ and 3% Mo-Nb₂O₅/C materials at 100 mA g⁻¹ (a), at 500 mA g⁻¹ (b), from 25 to 1000mA g⁻¹ (c) 图 5. 3% Mo-Nb₂O₅和 3% Mo-Nb₂O₅/C 材料(a) 在 100 mA g⁻¹ 电流密度下的循环性能图, (b) 在 500 mA g⁻¹ 电流密度下的循环性能图, (c) 在 25、50、100、200、500 和 1000 mA g⁻¹ 电流密度下的阶梯倍率性能图

图 6(a)和图 6(b)展示了 3% Mo-Nb₂O₅和 3% Mo-Nb₂O₅/C-8 材料在 100 mA g⁻¹的电流密度下的充放电曲线。从图中可以看出,这两种材料的充放电曲线相似,说明 C 的复合不会影响 Mo-Nb₂O₅材料的电化学反应过程。此外,还可以看出 3% Mo-Nb₂O₅和 3% Mo-Nb₂O₅/C-8 的首周放电比容量分别为 471.2 和

1209.0 mAh g⁻¹,对应的充电比容量为 143.2 和 266.1 mAh g⁻¹,相应的库仑效率分别为 30.1%和 22%,这两种材料的初始库仑效率较低是由于电解质分解和固体电解质膜(SEI)的形成导致的[14] [15]。图 6(c)和图 6(d)为 3% Mo-Nb₂O₅和 3% Mo-Nb₂O₅/C-8 材料在 25~1000 mA g⁻¹电流密度下的充放电曲线。从图中可以 看出,这两种材料都没有明显的充放电电压平台,与 3% Mo-Nb₂O₅材料相比,3% Mo-Nb₂O₅/C-8 纳米复 合材料在不同的电流密度下经过多次循环均表现出很高的充放电比容量,即使电流密度达到 1000 mA g⁻¹,也可以保持高达 120.7 mAh g⁻¹的放电比容量,证明该材料具有优异的倍率性能。

Figure 6. GCD plots of the different cycles at a current density of 100 mA g⁻¹. (a) 3% Mo-Nb₂O₅, (b) 3% Mo-Nb₂O₅/C-8 and GCD plots at different current density, (c) 3% Mo-Nb₂O₅, (d) 3% Mo-Nb₂O₅/C-8 图 6. 100 mA g⁻¹ 的电流密度下不同循环周次的充放电曲线(a) 3% Mo-Nb₂O₅, (b) 3% Mo-Nb₂O₅/C-8 和不同电流密度下的充放电曲线, (c) 3% Mo-Nb₂O₅, (d) 3% Mo-Nb₂O₅/C-8

为了进一步分析 3% Mo-Nb₂O₅/C 复合电极材料的动力学行为,对 3% Mo-Nb₂O₅和 3% Mo-Nb₂O₅/C 系列材料进行 EIS 测试。从图 7(a)中可以看出,3% Mo-Nb₂O₅ 和 3% Mo-Nb₂O₅/C 系列材料都是由中频区 的半圆和低频区的斜线组成,图 7(b)为拟合曲线所对应的等效电路。与其它不同复合比例的 3% Mo-Nb₂O₅/C 材料相比,3% Mo-Nb₂O₅/C-8 纳米复合材料的电荷转移电阻 R_{ct} (638.3 Ω)最低,说明该复合材料的电荷传递更快,电子电导率更高。图 7(c)和图 7(d)是根据 3% Mo-Nb₂O₅ 和 3% Mo-Nb₂O₅/C 系列材料 的角频率平方根倒数和实部阻值拟合出来的曲线,通过拟合曲线可得到斜率 σ 。其中,3% Mo-Nb₂O₅/C-8 纳米复合材料的斜率 σ 最小,说明该复合材料具有更快的 Na⁺扩散速率。

为了深入研究 3% Mo-Nb₂O₅/C 负极材料的电化学储钠行为,采用循环伏安法(CV)进行了测试。图 8 为 3% Mo-Nb₂O₅ 和 3% Mo-Nb₂O₅/C 系列材料在 0.01~3.0 V 电压范围内,扫描速率为 0.1 mV s⁻¹ 的前 4 圈 CV 曲线图。从图中可以看出,3% Mo-Nb₂O₅ 和不同复合比例的 3% Mo-Nb₂O₅/C 材料的 CV 曲线基本 一致,第一次循环和第二次循环之间有明显的差异,表明在 1.5 V 以下形成了 SEI 膜,导致了不可逆的 容量损失[4]。1.0 V 左右的宽还原峰与 Nb₂O₅ 的 Na⁺嵌入有关(Nb₂O₅ + xNa⁺→Na_xNb₂O₅);而在随后的反 向扫描中,1.0 V 左右出现的氧化峰则与脱钠过程有关(Na_xNb₂O₅→Nb₂O₅ + xNa⁺) [16],这与充放电曲线 结果一致。后续循环中没有出现明显的氧化还原峰,循环曲线重叠较好,说明该材料的电化学反应具有

高度的稳定性和可逆性。

Figure 7. (a) Nyquist plots and corresponding fit curves, (b) the equivalent circuit diagram, (c) the linear relationship of Z' and ω-1/2, (d) partial enlarged detail of the Z' and ω-1/2 linear relationship 图 7. 3% Mo-Nb₂O₅和不同复合比例的 3% Mo-Nb₂O₅/C 材料。(a) Nyquist 图, (b) 对应的等效 电路图, (c) Z'和 ω-1/2 线性关系图, (d) 对应 Z'和 ω-1/2 线性关系局部放大图

图 8. Mo-Nb₂O₅和 Mo-Nb₂O₅/C 复合材料在 0.1 mV s⁻¹扫描速率下前四圈的 CV 曲线

4. 结论

本文以五氯化钼为钼源,葡萄糖作为碳源,采用简单的水热法成功制备了钼掺杂碳复合的 Mo-Nb₂O₅/C 材料,对该材料进行了系列物理性能表征和电化学性能测试。C 的加入和 Mo 的引入没有改 变 Nb₂O₅ 的晶体形貌和微观结构,并且碳以小球的形式均匀地分布在 Mo-Nb₂O₅ 材料表面。3% Mo-Nb₂O₅/C-8 复合材料具有最佳的电化学性能,同未改性 Nb₂O₅ 材料相比,Mo 掺杂可以提升电极材料 的比容量,碳复合可以增强 Nb₂O₅ 纳米片材料的电子电导率,使得该材料表现出良好的循环性能和倍率 性能。

参考文献

- Yan, L., Chen, G., Sarker, S., *et al.* (2016) Ultrafine Nb₂O₅ Nanocrystal Coating on Reduced Graphene Oxide as Anode Material for High Performance Sodium Ion Battery. *ACS Applied Materials & Interfaces*, 8, 22213-22219. <u>https://doi.org/10.1021/acsami.6b06516</u>
- [2] Kim, H., Lim, E., Jo, C., et al. (2015) Ordered-Mesoporous Nb₂O₅/Carbon Composite as a Sodium Insertion Material. Nano Energy, 16, 62-70. <u>https://doi.org/10.1016/j.nanoen.2015.05.015</u>
- [3] Augustyn, V., Come, J., Lowe, M. A., et al. (2013) High-Rate Electrochemical Energy Storage through Li⁺ Intercalation Pseudo-Capacitance. *Nature Materials*, 12, 518-522. <u>https://doi.org/10.1038/nmat3601</u>
- [4] Zhong, X., Li, Y., Zhang, L., et al. (2019) High-Performance Sodium-Ion Batteries Based on Nitrogen-Doped Mesoporous Carbon Spheres with Ultrathin Nanosheets. ACS Applied Materials & Interfaces, 11, 2970-2977. <u>https://doi.org/10.1021/acsami.8b17473</u>
- [5] Li, G., Wang, X., Ma, X. (2013) Nb₂O₅-Carbon Core-Shell Nanocomposite as Anode Material for Lithium-Ion Battery. Journal of Energy Chemistry, 22, 357-362. <u>https://doi.org/10.1016/S2095-4956(13)60045-5</u>
- [6] Suzuki, T., Inoue, S., Ando, Y. (2010) Catalytic Effect of Different Forms of Iron in Purification of Single-Walled Carbon Nanotubes. *Journal of Nanoscience and Nanotechnology*, **10**, 3924-3928. <u>https://doi.org/10.1166/jnn.2010.1970</u>
- [7] Zhang, Y., Fang, L., Sun, W., et al. (2021) A Novel Synthesis of Nb₂O₅@rGO Nanocomposite as Anode Material for Superior Sodium Storage. Chinese Chemical Letters, 32, 1144-1148. <u>https://doi.org/10.1016/j.cclet.2020.09.006</u>
- [8] Luo, D., Ma, C., Hou, J., et al. (2022) Integrating Nanoreactor with O-Nb-C Heterointerface Design and Defects Engineering toward High-Efficiency and Longevous Sodium Ion Battery. Advanced Energy Materials, 12, Article ID: 2103716. <u>https://doi.org/10.1002/aenm.202103716</u>
- [9] Subramanian, Y., Veerasubramani, G.K., Park, M-S., et al. (2022) Core-Shell Structured Nb₂O₅@N-Doped Carbon Nanoparticles as an Anode Material for Na-Ion Batteries. *Materials Letters*, **314**, Article ID: 131891. https://doi.org/10.1016/j.matlet.2022.131891
- [10] Xu, Y., Zhang, C., Zhou, M., et al. (2018) Highly Nitrogen Doped Carbon Nanofibers with Superior Rate Capability and Cyclability for Potassium Ion Batteries. *Nature Communications*, 9, Article No. 1720. <u>https://doi.org/10.1038/s41467-018-04190-z</u>
- [11] Liu, F., Cheng, X., Xu, R., et al. (2018) Binding Sulfur-Doped Nb₂O₅ Hollow Nanospheres on Sulfur-Doped Graphene Networks for Highly Reversible Sodium Storage. Advanced Functional Materials, 28, Article ID: 1800394. https://doi.org/10.1002/adfm.201800394
- [12] Wang, L., Bi, X., Yang, S. (2016) Partially Single-Crystalline Mesoporous Nb₂O₅ Nanosheets in between Graphene for Ultrafast Sodium Storage. Advanced Materials, 28, 7672-7679. <u>https://doi.org/10.1002/adma.201601723</u>
- [13] Yang, H., Xu, R., Gong, Y., et al. (2018) An Interpenetrating 3D Porous Reticular Nb₂O₅@Carbon Thin Film for Superior Sodium Storage. Nano Energy, 48, 448-455. <u>https://doi.org/10.1016/j.nanoen.2018.04.006</u>
- [14] Li, S., Qiu, J., Lai, C., et al. (2015) Surface Capacitive Contributions: Towards High Rate Anode Materials for Sodium ion Batteries. Nano Energy, 12, 224-230. <u>https://doi.org/10.1016/j.nanoen.2014.12.032</u>
- [15] Yang, L., Zhu, Y. E., Sheng, J., et al. (2017) T-Nb₂O₅/C Nanofibers Prepared through Electrospinning with Prolonged cycle Durability for High-Rate Sodium-Ion Batteries Induced by Pseudo-Capacitance. Small, 13, Article ID: 1702588. <u>https://doi.org/10.1002/smll.201702588</u>
- [16] Chen, G., Chen, J., Parkin, I. P., et al. (2022) Pseudohexagonal Nb₂O₅-Decorated Carbon Nanotubes as a High-Performance Composite Anode for Sodium Ion Batteries. ChemElectroChem, 9, e202200800. https://doi.org/10.1002/celc.202200800