核壳结构Ta₂O₅@Ta₃N₅纳米花控制合成 工艺研究

董鑫

哈尔滨师范大学化学化工学院,黑龙江 哈尔滨

收稿日期: 2023年3月14日; 录用日期: 2023年4月7日; 发布日期: 2023年4月14日

摘要

以TaCl₅为钽源,采用水热-高温氮化法合成核壳结构Ta₂O₅@Ta₃N₅纳米花。首先,利用场发射扫描电 子显微镜(SEM)测试评价样品形貌,研究溶剂种类、异丙醇用量、盐酸用量、水热时间等条件因素对样 品形貌调控规律;异丙醇溶剂有利于促进棒状结构生成,当异丙醇用量为14 mL,浓盐酸用量为400 μL, 经160℃水热4 h制得Ta₂O₅纳米花,组成纳米花的棒状结构直径约50 nm,长约200 nm。再利用高温氮 化技术,在50 mL·min⁻¹ NH₃气流下,经850℃氮化3 h,Ta₂O₅纳米花经拓扑转换制得核壳结构 Ta₂O₅@Ta₃N₅纳米花。XRD分析证实样品具有Ta₂O₅和Ta₃N₅双相结构,晶化度较高;HRTEM分析表明 样品形成Ta₂O₅/Ta₃N₅;BET比表面积为21.9 m²·g⁻¹。本文为进一步开展Ta₂O₅@Ta₃N₅基纳米材料的制 备及应用性能研究奠定实验技术基础。

关键词

Ta₂O₅@Ta₃N₅纳米花,水热合成,高温氮化,控制合成,核壳结构,拓扑转换,晶化度

Controllable Synthesis of Core-Shell Structure Ta₂O₅@Ta₃N₅ Nanoflowers

Xin Dong

School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin Heilongjiang

Received: Mar. 14th, 2023; accepted: Apr. 7th, 2023; published: Apr. 14th, 2023

Abstract

 $Ta_2O_5 @Ta_3N_5 \ nanoflowers \ were \ synthesized \ by \ a \ combination \ of \ hydrothermal \ and \ high-temperature nitridation \ method, using \ TaCl_5 \ as \ the \ tantalum \ source. \ Based \ on \ the \ morphology \ evaluated$

by field emission scanning electron microscopy (SEM), the preparation process of Ta_2O_5 nanoflowers was optimized by regulating process conditions including solvent type, amount of isopropanol, amount of hydrochloric acid, and hydrothermal time. Isopropanol solvent is beneficial to promote the formation of rod-like structure. When the amount of isopropanol is 14 mL and the amount of concentrated hydrochloric acid is 400 µL, Ta_2O_5 nanoflowers are prepared by hydrothermal treatment at 160°C for 4 h. The rod-like structure of nanoflowers is about 50 nm in diameter and about 200 nm in length. Then, $Ta_2O_5@Ta_3N_5$ nanoflowers were prepared by topological transformation of Ta_2O_5 nanoflowers, using high-temperature nitriding technology, under 50 mL·min⁻¹ NH₃ gas flow, after nitriding at 850°C for 3 h. XRD analysis confirmed that the sample possessed both Ta_2O_5 and Ta_3N_5 phases with a high crystallization degree. HRTEM analysis indicated that the sample exhibited core-shell structure $Ta_2O_5@Ta_3N_5$. Its BET specific area was 21.9 m²·g⁻¹. This work lays an experimental technical foundation for further research on preparation and application properties of $Ta_2O_5@Ta_3N_5$ -based nanomaterials.

Keywords

Ta₂O₅@Ta₃N₅ Nanoflowers, Hydrothermal Synthesis, High-Temperature Nitridation, Controllable Synthesis, Core-Shell Structure, Topological Transformation, Crystallization Degree

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

CC ① Open Access

1. 引言

光催化分解水是解决全球能源短缺和环境污染问题的有效手段,可以将太阳能转化为清洁和可再生的氢气。金属氮化物具有比它们氧化物更窄的带隙,可见光响应范围更大,催化性能更高而备受关注。 钽基氮化物因其良好的电热稳定性、合适的带隙、储量丰富、无毒等特点,光催化应用前景广阔[1][2][3]。 传统的 Ta₃N₅基光催化材料颗粒较大,比表面积小、输运性差、光生载流子复合快、表面催化反应动力 学慢,上述缺点严重限制了其光催化应用[4]。形貌控制工程可以提高材料的光催化活性和选择性,不同 暴露表面表现出不同的催化活性[5][6]。Ta₃N₅基光催化材料形貌控制研究对于提升其催化性能极其必要。

研究表明,通过不同合成路线将钽基氮化物设计成纳米颗粒、纳米片、纳米球、纳米网、纳米线和 纳米管等形貌,其催化活性得到明显提升[7] [8]。控制合成特殊纳米结构的 Ta₃N₅,如 Cui 等[9]以 HF、 HCl、H₂O₂为形貌控制剂利用水热合成以及高温氮化技术制得了 Ta₃N₅ 3D 纳米花状层级结构,可以提供 更多活性位点,改善光生载流子的输运性能和缩短光生载流子传输距离,进而提高催化活性[10] [11]。前 期,课题组构建了 Ta₂O₅@TaON@Ta₃N₅n-n 突变异质结构,驱动光生载流子由内向外定向快速迁移至样 品表面,促进光生载流子高效分离,显著提升样品光催化产氢性能[12]。

本文采用水热合成与高温氮化联合技术,建立了核壳结构 Ta₂O₅@ Ta₃N₅纳米花控制合成工艺,为进 一步开发新型高活性 Ta₃N₅基纳米光催化材料的奠定实验技术基础。

2. 实验部分

2.1. 仪器与试剂

试剂:五氯化钽(分析纯),湖南省华京粉体有限公司;盐酸(分析纯),西陇化工股份有限公司;氢氟酸,(分析纯),天津市科密欧化学试剂有限公司;乙醇(分析纯),天津市光复科技有限公司;异丙醇(分析

纯),天津市富宇精细化工有限公司。

仪器: 热场发射电子扫描电镜 SU-70, 日本日立公司; X 射线衍射仪 XRD-6000, 日本岛津公司; 电 热风鼓干燥箱 DHG-9030A, 天津市泰斯特仪器有限公司; 透射电子显微镜 Tecnai G²TF20, 美国 FEI 公 司; 管式炉 MXG1200-40S, 上海微行炉业有限公司。

2.2. Ta₂O₅@Ta₃N₅纳米花制备

准确称取 0.2687 g TaCl₅分别于盛有 14 mL 的异丙醇溶液(水、乙醇溶液、乙醇和异丙醇溶液)的烧杯 中,在室温条件下,边搅拌边加入 4.8 mL 体积的蒸馏水,再加入浓 HF 200 µL 溶液和浓 HCl 溶液 400 µL (800 µL、600 µL、200 µL)。充分续搅 30 min 后,确保所有反应试剂能够均匀分散,将所得澄清混合液 转移到聚四氟乙烯反应釜中,经 160℃水热 4 h (3 h)后,冷却至室温,洗涤过滤烘干,750℃焙烧 2 h 将所 得产物平铺在刚玉瓷舟中,放置于管式炉中通入氨气,经 850℃氮化 3 h,制得核壳结构 Ta₂O₅@Ta₃N₅ 纳 米花。

3. 结果与讨论

3.1. Ta₂O₅纳米花的可控制备

3.1.1. 溶剂种类对 Ta₂O₅纳米花形貌的影响

图 1 是以不同溶剂经过 160℃水热 3 h 所制备出的 Ta₂O₅ 纳米催化剂的 SEM 图。可见,溶剂对 Ta₂O₅ 形貌有明显影响,溶剂中醇用量增加,样品生长出更多的纳米棒。图 1(a)是以水为溶剂制备样品呈无规则形貌的团聚体。图 1(b)是以乙醇溶液为溶剂制备样品呈大小不均匀的圆片。图 1(c)是以异丙醇溶液为溶剂制备样品呈由纳米棒(长约 200 nm、直径约 30~50 nm)构成的花状形貌。图 1(d)是以乙醇和异丙醇溶液为溶剂制备样品呈球型,表面出现了少量的棒状结构。异丙醇作为反应介质,可以控制样品花状层级结构的生长[13] [14],还能增强 Ta₂O₅表面酸根离子吸附的稳定效应,促进其择优生长。因而,选择异丙醇为溶剂进行后续研究。

Figure 1. SEM images of Ta₂O₅ nanoflowers prepared using (a) water (b) ethanol (c) isopropyl alcohol (d) isopropyl alcohol, and ethanol as solvents 图 1. 分别以(a) 水、(b) 乙醇、(c) 异丙醇、(d) 异丙醇和乙醇为溶剂 制得 Ta₂O₅ 纳米花的 SEM 图

3.1.2. 异丙醇用量对 Ta2O5 纳米花形貌的影响

调控异丙醇用量对 Ta₂O₅形貌的影响如图 2 所示。可见,随着异丙醇含量升高,纳米棒状结构增多, 纳米棒变细,棱角清晰。图 2(a)异丙醇用量为 8 mL,明显存在较多的无规则形貌团聚体,纳米棒状结构 较少。图 2(b)异丙醇用量增加到 10 mL,出现较为明显的花状层级结构。图 2(c)异丙醇用量为 12 mL,纳 米棒较均匀放射状排布,花状层级结构更明显。图 2(d)异丙醇用量为 14 mL,纳米棒状结构更多,长约 200 nm,呈放射状均匀排布,形成良好的纳米花状层级结构。可见,异丙醇用量对 Ta₂O₅形貌调控作用 明显,异丙醇含量增多,异丙醇与 Ta₂O₅ 表面酸根离子吸附的稳定性越大,控制其择优生长,确定异丙 醇最佳用量为 14 mL。

Figure 2. SEM images of Ta₂O₅ nanoflowers prepared with (a) 8 ml (b) 10 ml (c) 12 ml (d) 14 ml isopropyl

图 2. 异丙醇用量为(a) 8 ml、(b) 10 ml、(c) 12 ml、(d) 14 ml 所制备 Ta₂O₅ 纳米花的 SEM 图

3.1.3. 盐酸用量对 Ta2O5纳米花形貌的影响

图 3 为调控盐酸用量制备 Ta₂O₅纳米光催化剂的 SEM 图像。显然,随着盐酸用量从 800 μL 减小到 400 μL, Ta₂O₅纳米花的棒状增多,花状结构层级明显,说明酸量较大抑制 Ta₂O₅纳米棒生长。当盐酸用量从 400 μL 继续减小到 200 μL 时,棒状结构减少。因此,盐酸最佳用量为 400 μL。

3.1.4. 水热时间对 Ta2O5 纳米花形貌的影响

为了获得更具优势形貌的 Ta₂O₅ 前驱体,利用上述实验确定的优化工艺条件,调控水热时间对 Ta₂O₅ 形貌的影响如图 4 所示。可见,水热时间从 3 h 增加到 4 h, Ta₂O₅ 纳米花的棒状结构增多,纳米棒变长,分布均匀分散,花状形貌完整,说明充分水热时间是保障纳米棒完全生长的关键因素。因此,确定最佳水热时间为 4 h。

Figure 3. SEM images of Ta₂O₅ nanoflowers prepared with (a) 800 μL, (b) 600 μL, (c) 400 μL, (d) 200 μL HCl amounts, respectively **图 3.** HCl 用量为(a) 800 μL、(b) 600 μL、(c) 400 μL、(d) 200 μL 所制备 Ta₂O₅ 纳米光花的 SEM 图 像

Figure 4. SEM images of Ta₂O₅ nanoflowers prepared with a hydrothermal time of (a) 3 h, (b) 4 h 图 4. 水热时间为(a) 3 h、(b) 4 h 所制备 Ta₂O₅ 纳米花的 SEM 图

3.2. Ta₂O₅@Ta₃N₅纳米花高温氮化工艺

图 5 为经 850℃高温氮化 3 h 制备 Ta₂O₅@Ta₃N₅纳米催化剂的 SEM 图像。可见,经过高温氮化,样品形貌略有改变,纳米棒出现局部晶格塌陷,晶体棒状结构略有弯曲。这是由于高温氮化过程中,Ta₂O₅ 经拓扑转化生成 Ta₂O₅@Ta₃N₅,其结构框架未发生明显改变,仍保持 Ta₂O₅的花状层级结构,2 个 N 原子替代 3 个 O 原子形成氧空位而引起局部晶格塌陷,致使棒状结构弯曲。

Figure 5. SEM images of (a) Ta₂O₅ and (b) Ta₂O₅@Ta₃N₅nanoflowers 图 5. (a) Ta₂O₅和(b) Ta₂O₅@Ta₃N₅纳米花的 SEM 图

3.3. Ta₂O₅@Ta₃N₅纳米花的表征

3.3.1. XRD 分析

图 6 为样品 XRD 谱。由图 6 可见,位于 17.20°、24.46°、31.36°、34.90°、35.93°、39.26°、44.10°处 的特征衍射峰对应于 Ta₃N₅ (002)、(110)、(023)、(004)、(113)、(024)和(043)晶面(JCPDS No. 79-1533) [12];位于 30.0°、47.58°处较弱的衍射峰归属于 Ta₂O₅ 的(112)和(123)晶面(JCPDSNo.54-0432) [15],源于样品未 氮化的 Ta₂O₅ 核芯。

Figure 6. XRD pattern of Ta₂O₅@Ta₃N₅ sample 图 6. Ta₂O₅@Ta₃N₅样品的 XRD 谱

3.3.2. HRTEM 和 BET 分析

如图 7(a)为 Ta₂O₅@Ta₃N₅的 HRTEM 图。可见,晶格间距为 0.363 nm 的衍射条纹归属于 Ta₃N₅ (110) 晶面[10],晶格间距为 0.368 nm 的衍射条纹对应于 Ta₂O₅ (211)晶面[13],进一步证实 Ta₂O₅@Ta₃N₅的核 壳异质结构。图 7(b)为 Ta₂O₅@Ta₃N₅的 N₂吸附 - 脱附等温曲线,显示该样品为 IV 型等温线,在相对压 力范围内(0.2~0.95)具有 H3 型滞后环,BET 比表面积为 21.9 m²·g⁻¹。图 7(c)为孔径分布图,表明该样品 存在狭缝状介孔结构,以平均孔径为 24 nm 的介孔为主,由棒状结构堆积而成,有利于光催化反应传质 过程,进而提升催化性能。

Figure 7. (a) HRTEM image of Ta_2O_5 (a) Ta_3N_5 sample, (b) N_2 adsorption-desorption isotherms, (c) pore size distributions

图 7. (a) Ta₂O₅@Ta₃N₅样品的 HRTEM 图 (b) N₂ 吸附 - 脱附等温线 (c) 孔径分布

4. 结论

本文利用水热合成和高温氮化技术成功控制合成了核壳结构的 Ta₂O₅@Ta₃N₅纳米花。控制合成前驱 体 Ta₂O₅纳米花的优化工艺条件为:选用异丙醇溶液为溶剂,异丙醇用量为 14 mL,浓盐酸用量为 400 µL, 经 160℃水热时间为 4 h。然后,在 50 mL·min⁻¹ NH₃ 气流下,经 850℃高温氮化 3 h, Ta₂O₅纳米花拓扑转 化层级结构 Ta₂O₅@Ta₃N₅纳米花,纳米棒长约 200 nm,直径约 50 nm,比表面积为 21.9 m²·g⁻¹。

参考文献

- Li, W., Cheng, F., Jin, L., Wu, Q. and Xie, K. (2021) Centimeter-Scale Porous Ta₃N₅ Single Crystal Monolith Enhances Photoelectrochemical Performance. *The Journal of Physical Chemistry C*, **125**, 8098-8104. <u>https://doi.org/10.1021/acs.jpcc.1c01558</u>
- [2] Jiang, H.Q., Li, X.S. and Zang, S.Y. (2021) Mixed Cobalt-Nitrides Co_xN and Ta₂N Bifunction-Modified Ta₃N₅ Nanosheets for Enhanced Photocatalytic Water-Splitting into Hydrogen. *Journal of Alloys and Compounds*, 854, 155328-155337. <u>https://doi.org/10.1016/j.jallcom.2020.155328</u>
- [3] 张京. 六面体形 Ta₂O₅@Ta₃N₅ 的熔盐辅助高温氮化控制合成及可见光解水析氢性能[J]. 材料科学, 2021, 11(4): 485-496.
- [4] Pihosh, Y., Nandal, V., Minegishi, T., Katayama, M., Yamada, T., Seki, K., Sugiyama, M. and Domen, K. (2020) Development of a Core-Shell Heterojunction Ta₃N₅-Nanorods/BaTaO₂N Photoanode for Solar Water Splitting. ACS Energy Letters, 5, 3492-2497. <u>https://doi.org/10.1021/acsenergylett.0c00900</u>
- [5] Ladj, R., Bitar, A., Eissa, M., Mugnier, Y., Dantec, R., Fessi, H. and Elaissari, A. (2013) Individual Inorganic Nano-

particles: Preparation, Functionalization and *in Vitro* Biomedical Diagnostic Applications. *Journal of Materials Chemistry B*, **1**, 1381-1396. <u>https://doi.org/10.1039/c2tb00301e</u>

- [6] Ladj, R., Magouroux, T., Eissa, M., Dubled, M., Mugnier, Y., Dantec, R.L., Galez, C., Valour, J.P. and Elaissari, A. (2013) Aminodextran-Coated Potassium Niobate (KNbO₃) Nanocrystals for Second Harmonic Bioimaging. *Colloids and Surfaces* A: Physicochemical and Engineering Aspects, 439, 131-137. <u>https://doi.org/10.1016/j.colsurfa.2013.02.025</u>
- [7] Nawaz, M., Mou, F.Z., Xu, L.L. and Guan, J.G. (2018) Effect of Solvents and Reaction Parameters on the Morphology of Ta₂O₅ and Photocatalytic Activity. *Journal of Molecular Liquids*, 269, 211-216. https://doi.org/10.1016/j.molliq.2018.08.026
- [8] Gao, R., Zhou, S. and Chen, M. (2011) Facile Synthesis of Monodisperse Meso-Microporous Ta₃N₅ Hollow Spheres and Their Visible Light-Driven Photocatalytic Activity. *Journal of Materials Chemistry*, 21, 17087-17090. <u>https://doi.org/10.1039/c1jm13756e</u>
- [9] Cui, X., Gong, Y.H. and Liu, Y.P. (2022) Synthesis of a Z-Scheme Ternary Photocatalyst (Ta₃N₅/Ag₃PO₄/AgBr) for the Enhanced Photocatalytic Degradation of Tetracycline under Visible Light. *Journal of Physics and Chemistry of Solids*, 170, 110962-110673. <u>https://doi.org/10.1016/j.jpcs.2022.110962</u>
- [10] Yuliati, L., Yang, J.H., Wang, X.C., Maeda, K., Takata, T., Antoniettic, M. and Domen, K. (2010) Highly Active Tantalum(v) Nitride Nanoparticles Prepared from a Mesoporous Carbon Nitride Template for Photocatalytic Hydrogen Evolution under Visible Light Irradiation. *Journal of Materials Chemistry*, 20, 4295-4298. https://doi.org/10.1039/c0jm00341g
- [11] Shi, X.M., Ma, D.L., Ma, Y. and Hu, A.M. (2017) N-Doping Ta₂O₅ Nanoflowers with Strong Adsorption and Visible Light Photocatalytic Activity for Efficient Removal of Methylene Blue. *Journal of Photochemistry and Photobiology A Chemistry*, 332, 487-496. <u>https://doi.org/10.1016/j.jphotochem.2016.09.014</u>
- [12] Fukasawa, Y., Takanabe, K., Shimojima, A., Antonietti, M., Domen, K. and Okubo, T. (2011) Synthesis of Ordered Porous Graphitic-C₃N₄ and Regularly Arranged Ta₃N₅ Nanoparticles by Using Self-Assembled Silica Nanospheres as a Primary Template. *Chemistry—An Asian Journal*, 6, 103-109. <u>https://doi.org/10.1002/asia.201000523</u>
- [13] Zhang, W.L., Jiang H.Q., Zhang, W. and Zang, S.Y. (2020) Constructing Rh-Rh³⁺ Modified Ta₂O₅@TaON@Ta₃N₅ with Special Double n-n Mutant Heterojunctions for Enhanced Photocatalytic H₂-Evolution. *RSC Advances*, **10**, 29424-29431. <u>https://doi.org/10.1039/D0RA02214D</u>
- [14] Gordon, T.R., Cargnello, M., Paik, T., Mangolini, F., Weber, R.T., Fornasiero, P. and Murray, C.B. (2012) Nonaqueous Synthesis of TiO₂ Nanocrystals Using TiF₄ to Engineer Morphology Oxygen Vacancy Concentration and Photocatalytic Activity. *Journal of the American Chemical Society*, **134**, 6751-6761. <u>https://doi.org/10.1021/ja300823a</u>
- [15] Jiang, H.Q., Feng, L. and Zhu, S.Y. (2022) Hydrous RuO₂ and Co_xN_y Difunction-Modified Ta₃N₅@Ta₂N Multi-Heterojunction Nanoplates for Efficient Visible-Light-Driven Photocatalytic Hydrogen Reduction. *International Journal of Hydrogen Energy*, **46**, 39855-39867. <u>https://doi.org/10.1016/j.ijhydene.2021.09.238</u>