基于极化扭转器的宽带全金属可折叠反射阵天线
Wideband Metal-Only Folded Reflectarray Antenna Based on Polarization Twister
DOI: 10.12677/hjwc.2024.142006, PDF, 下载: 50  浏览: 93 
作者: 陈 谦:中国联合网络通信有限公司西安软件研究院,陕西 西安
关键词: 宽带可折叠全金属反射阵Wideband Folded Metal-Only Reflectarray
摘要: 本文提出了一种基于极化扭转器的新型宽带全金属折叠反射天线。为了提高简单性和降低成本,本设计专注于1Bit相移的架构。全金属折叠反射阵天线包含全金属极化栅格、基于全金属极化扭转器的宽带全金属反射阵单元以及宽带标准波导馈源。首先,本文提出了一种简单的全金属极化扭转反射阵单元,它可以将入射波扭转为与之正交的反射波。所提出的全金属极化扭转单元在12~18 GHz全频段内极化扭转率超过80%。工作在Ku波段的宽带标准波导作为该可折叠反射阵的馈源。最后,基于所提出的全金属极化扭转单元,设计、制作宽带全金属折叠反射天线并对其进行测试。测试结果表明,该全金属折叠反射阵天线获得20%的1 dB增益带宽,在15 GHz时的峰值增益为22.5 dBi,最大孔径效率约为29%。该天线的宽带和全金属特性使其在卫星通信中具有很大的应用潜力。
Abstract: A novel wideband metal-only folded reflectarray antenna (MFRA) based on sub-wavelength polarization twister is presented in this paper. To improve the simplicity and lower the cost, this design focuses exclusively on an architecture with 1-Bit phase shifting. The MFRA consists of a metal-only polarization grid (MPG), a wideband metal reflectarray based on sub-wavelength metal-only polarization twister (MPT) and a wideband standard waveguide as the feed. First, a simple MPT element is proposed, which operates two states for rotating polarization of the reflected wave with respect to that of the incident wave. The proposed MPT element provides more than 80% polarization rotating ratio within the whole band of 12~18 GHz. A wideband standard waveguide feed operating at Ku-band is also used to illuminate the MFRA. Finally, based on the proposed MPT element, a broadband MFRA is designed, fabricated and tested. The tested results demonstrate that the MFRA obtains 20% 1-dB gain bandwidth. It has a peak gain of 22.5 dBi gain at 15 GHz. Also, its maximum aperture efficiency is about 29%. Wideband and metal-only features of the MFRA makes it has great potential application in satellite communication.
文章引用:陈谦. 基于极化扭转器的宽带全金属可折叠反射阵天线[J]. 无线通信, 2024, 14(2): 34-42. https://doi.org/10.12677/hjwc.2024.142006

参考文献

[1] Berry, D., Malech, R. and Kennedy, W. (1963) The Reflectarray Antenna. IEEE Transactions on Antennas and Propagation, 11, 645-651.
https://doi.org/10.1109/TAP.1963.1138112
[2] Huang, J. and Encinar, J.A. (2008) Reflectarray Antennas. Wiley, Hoboken, USA.
https://doi.org/10.1002/9780470178775
[3] Pozar, D.M., Targonski, S.D. and Syrigos, H.D. (1997) Design of Millimeter Wave Microstrip Reflectarrays. IEEE Transactions on Antennas and Propagation, 45, 287-296.
https://doi.org/10.1109/8.560348
[4] Wilke, R., Schraml, K. and Heberling, D. (2015) Space Radiation Hardness of PTFE Based RF Substrates for GEO Satellite Application. Proceedings of 2015 9th European Conference on Antennas and Propagation, Lisbon, Portugal, 13-17 April 2015.
[5] Malfajani, R.S. and Atlasbaf, Z. (2012) Design and Implementation of a Broadband Single Layer Circularly Polarized Reflectarray Antenna. IEEE Antennas and Wireless Propagation Letters, 11, 973-976.
https://doi.org/10.1109/LAWP.2012.2213570
[6] Qin, P.Y., Guo, Y.J. and Weily, A.R. (2016) Broadband Reflectarray Antenna Using Subwavelength Elements Based on Double Square Meander-Line Rings. IEEE Transactions on Antennas and Propagation, 64, 378-383.
https://doi.org/10.1109/TAP.2015.2502978
[7] Guclu, C., Perruisseau-Carrier, J. and Civi, O.A. (2012) Proof of Concept of a Dual-Band Circularly-Polarized RF MEMS Beam-Switching Reflectarray. IEEE Transactions on Antennas and Propagation, 60, 5451-5455.
https://doi.org/10.1109/TAP.2012.2207690
[8] Zhao, G., Jiao, Y.C., Zhang, F. and Zhang, F.S. (2010) A Subwavelength Element for Broadband Circularly Polarized Reflectarrays. IEEE Antennas and Wireless Propagation Letters, 9, 330-333.
https://doi.org/10.1109/LAWP.2010.2047836
[9] Cho, Y.H., Byun, W.J. and Song, M.S. (2011) High Gain Metal-Only Reflectarray Antenna Composed of Multiple Rectangular Grooves. IEEE Transactions on Antennas and Propagation, 59, 4559-4568.
https://doi.org/10.1109/TAP.2011.2165479
[10] An, W.X., Xu, S.H. and Yang, F. (2014) A Metal-Only Reflectarray Antenna Using Slot-Type Elements. IEEE Antennas and Wireless Propagation Letters, 13, 1553-1556.
https://doi.org/10.1109/LAWP.2014.2342376
[11] Deng, R., Yang, F., Xu, S. and Li, M. (2016) A Low-Cost Metal-Only Reflectarray Using Modified Slot-Type Phoenix Element With 360° Phase Coverage. IEEE Transactions on Antennas and Propagation, 64, 1556-1560.
https://doi.org/10.1109/TAP.2016.2526258
[12] Henderson, K.Q. and Ghalichechian, N. (2020) Circular-Polarized Metal-Only Reflectarray with Multi-Slot Elements. IEEE Transactions on Antennas and Propagation, 68, 6695-6703.
https://doi.org/10.1109/TAP.2020.2993229
[13] Deng, R., Xu, S., Yang, F. and Li, M. (2017) Design of a Low-Cost Single-Layer X/Ku Dual-Band Metal-Only Reflectarray Antenna. IEEE Antennas and Wireless Propagation Letters, 16, 2106-2109.
https://doi.org/10.1109/LAWP.2017.2698099
[14] Menzel, W., Pilz, D. and Tikriti, M. (2002) 60 GHz Triple Folded Reflector Antenna. Electronics Letters, 38, 1075-1076.
https://doi.org/10.1049/el:20020779
[15] Tarn, I., Wang, Y. and Chung, S. (2008) A Dual-Mode Millimetre-Wave Folded Microstrip Reflectarray Antenna. IEEE Transactions on Antennas and Propagation, 56, 1510-1517.
https://doi.org/10.1109/TAP.2008.923310
[16] Nguyen, B.D., Lanteri, J., Dauvignac, J.-Y., et al. (2008) 94 GHz Folded Fresnel Reflector Using C-Patch Elements. IEEE Transactions on Antennas and Propagation, 56, 3373-3381.
https://doi.org/10.1109/TAP.2008.2005452
[17] Menzel, W., Pilz, D. and Al-Tikriti, M. (2002) Millimeter-Wave Folded Reflector Antennas with High Gain, Low Loss, and Low Profile. IEEE Antennas and Propagation Magazine, 44, 24-29.
https://doi.org/10.1109/MAP.2002.1028731
[18] Zeitler, A., Lanteri, J., Pichot, C. and Migliaccio, C. (2010) Folded Reflectarrays with Shaped Beam Pattern for Foreign Object Debris Detection on Runways. IEEE Transactions on Antennas and Propagation, 58, 3065-3068.
https://doi.org/10.1109/TAP.2010.2052564
[19] Guo, L., Tan, P.-K. and Chio, T.-H. (2017) On the Use of Single-Layered Subwavelength Rectangular Patch Elements for Broadband Folded Reflectarrays. IEEE Antennas and Wireless Propagation Letters, 16, 424-427.
https://doi.org/10.1109/LAWP.2016.2582201
[20] Jeong, J.G., Park, N.J. and Yoon, Y.J. (2014) Aperture Efficiency Improvement of Folded Reflectarray Using Rectangle and Split-Ring Combined Element. Electronics Letters, 54, 797-798.
https://doi.org/10.1049/el.2018.1194