拟南芥At2g34610基因编辑和过表达载体的构建
Construction of Arabidopsis At2g34610 Gene Editing and Overexpression Vector
DOI: 10.12677/BR.2022.114057, PDF, 下载: 253  浏览: 386  科研立项经费支持
作者: 赵一君, 李美玉, 王昕宇, 张 菡, 薛 明, 李桂民*:临沂大学生命科学学院,山东 临沂
关键词: 拟南芥ABAAt2g34610基因编辑过表达Arabidopsis thaliana ABA At2g34610 Gene-Editing Overexpression
摘要: ABA参与的信号转导可调节植物生长发育的各个阶段,如种子萌发、气孔关闭、根的发育和衰老等,并调控植物对干旱、冷、热、盐渍等多种逆境的适应。研究ABA信号转导通路对了解植物生长发育的调节机制具有极其重要的意义。RT-PCR检测结果显示,At2g34610是ABA响应基因,其表达受ABA诱导上调。为了研究At2g34610的功能,我们分别构建了At2g34610过表达载体和多靶点的基因编辑载体,这些载体可为创制目的基因过表达和突变体植株奠定基础,进而可为探究At2g34610在ABA信号转导和调控拟南芥抗逆性中的作用及其分子机制提供理想的实验材料。
Abstract: The signal transduction involved in ABA regulates various stages of plant growth and develop-ment, such as seed germination, stomatal closure, root development and senescence, and regu-lates plant adaptation to drought, cold, heat, salt and other stresses. The study of ABA signal transduction pathway is of great significance for understanding the regulation mechanism of plant growth and development. The results of RT-PCR showed that At2g34610 was an ABA-responsive gene and its expression was up-regulated by ABA. In order to study the function of At2g34610, gene multi-target editing vector and overexpression vector were constructed respectively. The vector construction laid a foundation for the creation of target gene overexpression and mutant plants, which are ideal experimental materials for exploring the role and molecular mechanism of At2g34610 in ABA signal transduction and regulation of stress resistance in Arabidopsis thaliana.
文章引用:赵一君, 李美玉, 王昕宇, 张菡, 薛明, 李桂民. 拟南芥At2g34610基因编辑和过表达载体的构建[J]. 植物学研究, 2022, 11(4): 486-493. https://doi.org/10.12677/BR.2022.114057

参考文献

[1] 毋若楠, 王红, 杨成成, 王争艳, 武永军. 拟南芥lncRNA-At5NC056820过表达载体构建及其转基因植株的抗旱性研究[J]. 西北植物学报, 2017, 37(10): 1904-1909.
[2] Rodríguez-Gacio, M.C., Matilla-Vázquez, M.A. and Matilla, A.J. (2009) Seed Dormancy and ABA Signaling: The Breakthrough Goes on. Plant Signaling & Behavior, 4, 1035-1048.
https://doi.org/10.4161/psb.4.11.9902
[3] Karssen, C., Brinkhorst-Van der Swan, D., Breekland, A. and Koornneef, M. (1983) Induction of Dormancy during Seed Development by Endogenous Abscisic Acid: Studies on Abscisic Acid Deficient Genotypes of Arabidopsis thaliana (L.) Heynh. Planta, 157, 158-165.
https://doi.org/10.1007/BF00393650
[4] Sah, S.K., Reddy, K.R. and Li, J. (2016) Abscisic Acid and Abiotic Stress Tolerance in Crop Plants. Frontiers in Plant Science, 7, Article No. 571.
https://doi.org/10.3389/fpls.2016.00571
[5] Kim, T.H., Böhmer, M., Hu, H.H., Nishimura, N. and Schroeder, J.I. (2010) Guard Cell Signal Transduction Network: Advances in Understanding Abscisic Acid, CO2, and Ca2+ Signaling. Annual Review of Plant Biology, 61, 561-591.
https://doi.org/10.1146/annurev-arplant-042809-112226
[6] Xing, W. and Rajashekar, C. (2001) Glycine Betaine Involvement in Freezing Tolerance and Water Stress in Arabidopsis thaliana. Environmental and Experimental Botany, 46, 21-28.
https://doi.org/10.1016/S0098-8472(01)00078-8
[7] Nayyar, H. and Walia, D. (2004) Genotypic Variation in Wheat in Response to Water Stress and Abscisic Acid-Induced Accumulation of Osmolytes in Developing Grains. Journal of Agronomy and Crop Science, 190, 39-45.
https://doi.org/10.1046/j.0931-2250.2003.00072.x
[8] Ton, J., Flors, V. and Mauch-Mani, B. (2009) The Multifaceted Role of ABA in Disease Resistance. Trends in Plant Science, 14, 310-317.
https://doi.org/10.1016/j.tplants.2009.03.006
[9] Tian, H., Chen, S., Yang, W., Wang, T., Zheng, K., Wang, Y., Cheng, Y., Zhang, N., Liu, S., Li, D., Liu, B. and Wang, S. (2017) A Novel Family of Transcription Factors Conserved in Angiosperms Is Required for ABA Signalling. Plant, Cell & Environment, 40, 2958-2971.
https://doi.org/10.1111/pce.13058
[10] Dong, T., Park, Y. and Hwang, I. (2015) Abscisic Acid: Biosynthesis, inactivation, Homoeostasis and Signalling. Essays in Biochemistry, 58, 29-48.
https://doi.org/10.1042/bse0580029
[11] Furihata, T., Maruyama, K., Fujita, Y., Umezawa, T., Yoshida, R., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2006) Abscisic Acid Dependent Multisite Phosphorylation Regulates the Activity of a Transcription Activator AREB1. Proceeding of the National Academy of Sciences of the United States of America, 103, 1988-1993.
https://doi.org/10.1073/pnas.0505667103
[12] Hubbard, K.E., Nishimura, N., Hitomi, K., Getzoff, E.D. and Schroeder, J.I. (2010) Early Abscisic acid Signal Transduction Mechanism: Newly Discovered Components and Newly Emerging Questions. Genes & Development, 24, 1695-1708.
https://doi.org/10.1101/gad.1953910
[13] Merlot, S., Gosti, F., Guerrier, D., Vavasseur, A. and Giraudat, J. (2001) The ABI1 and ABI2 Protein Phosphatases 2C Act in a Negative Feedback Regulatory Loop of the Abscisic Acid Signalling Pathway. The Plant Journal, 25, 295-303.
https://doi.org/10.1046/j.1365-313x.2001.00965.x
[14] Yue, M., Szostkiewicz, I., Korte, A., Moes, D., Yi, Y., Christmann, A. and Grill, E. (2009) Regulators of PP2C Phosphatase Activity Function as Abscisic Acid Sensors. Science, 324, 1064-1068.
https://doi.org/10.1126/science.1172408
[15] Park, S.Y., Fung, P., Nishimura, N., et al. (2009) Abscisic Acid Inhibits Type 2C Protein Phosphatases via the PYR/PYL Family of START Proteins. Science, 324, 1068-1071.
https://doi.org/10.1126/science.1173041
[16] 易文凯, 王佳, 杨辉, 田云, 卢向阳. 植物ABA受体及其介导的信号转导通路[J]. 植物学报, 2012, 47(5): 515-524.
[17] Liu, J.X., Srivastava, R., Che, P. and Howell, S.H. (2007) Salt Stress Responses in Arabidopsis Utilize a Signal Transduction Pathway Related to Endoplasmic Reticulum Stress Signaling. The Plant Journal, 51, 897-909.
https://doi.org/10.1111/j.1365-313X.2007.03195.x
[18] Lowder, L.G., Zhang, D., Baltes, N.J., Voytas, D.F., Zhang, Y., Zhang, D., Tang, X., Zheng, X., Hsieh, T.F. and Qi, Y.P. (2015) A CRISPR/Cas9 Toolbox for Multiplexed Plant Genome Editing and Transcriptional Regulation. Plant Physiology, 169, 971-985.
https://doi.org/10.1104/pp.15.00636
[19] Zhou, H., Liu, B., Weeks, D.P., Spalding, M.H. and Yang, B. (2014) Large Chromosomal Deletions and Heritable Small Genetic Changes Induced by CRISPR/Cas9 in Rice. Nucleic Acids Research, 42, 10903-10914.
https://doi.org/10.1093/nar/gku806
[20] Cheng, Y., Zhang, N., Hussain, S., Ahmed, S., Yang, W. and Wang, S. (2019) Integration of a FT Expression Cassette into CRISPR/Cas9 Construct Enables Fast Generation and Easy Identification of Transgene-Free Mutants in Arabidopsis. PLOS ONE, 14, e0218583.
https://doi.org/10.1371/journal.pone.0218583