纳米氧化铈暴露下大型溞miR-190和MARK2基因的表达和功能分析
Expression and Function Analysis of miR-190 and MARK2 Gene in Daphnia magna Exposed to Nano Cerium Dioxide
DOI: 10.12677/AMS.2023.104029, PDF, HTML, XML, 下载: 116  浏览: 184  国家自然科学基金支持
作者: 周 妍, 张园雯, 康欣怡, 刘 琪, 刘 淼, 吴 琪, 王 媛*:大连海洋大学,辽宁省省级高校水生生物学重点实验室,辽宁 大连
关键词: 纳米氧化铈大型溞微小RNA靶基因 Nano Cerium Dioxide Daphnia magna MicroRNA Target Gene
摘要: 随着越来越多的纳米氧化铈(nCeO2)进入水环境,增加了水生生物与nCeO2接触的健康风险。为了研究微小RNA-190 (miR-190)的功能以及nCeO2暴露对大型溞体内miR-190及其靶基因MARK2表达的影响,我们利用miRbase数据库和MEGA7.0软件分析miR-190序列在各物种中的系统发生关系。Targetscan、miRanda和RNAhybrid筛选鉴定miR-190的靶基因。通过GO和KEGG聚类分析揭示miR-190靶基因的生物学作用。qPCR分析nCeO2暴露对大型溞体内miR-190和MARK2转录水平表达的影响。我们发现,14个物种的miR-190序列有16个碱基完全相同,miR-190序列在进化过程中高度保守。miR-190的852个靶基因主要位于细胞膜、细胞质中,富集在细胞内信号转导、DNA模板和转录调控、蛋白质磷酸化等生物学过程,且靶基因参与胞吞作用、ABC转运器和FoxO等细胞内重要的信号通路。在nCeO2暴露24、48 h后,miR-190在大型溞中的转录表达下调,而MARK2的mRNA表达量则明显上升。结果提示miR-190与MARK2在大型溞中的表达存在负调控关系,miR-190可能通过调控MARK2的转录表达来影响相关的细胞生命活动,本研究为解析nCeO2对水生无脊椎动物的毒性效应提供科学参考。
Abstract: As more and more cerium oxide nanoparticles (nCeO2) enter the aquatic environment, the health risk of aquatic organisms exposed to nCeO2 increases. To investi-gate the function of microRNA-190 (miR-190) and the effect of nCeO2 exposure on the expression of miR-190 and its target gene MARK2 in Daphnia magna, we analyzed the phylogenetic relationships of miR-190 sequences across species using the miRbase database and MEGA 7.0 software. Tar-getscan, miRanda and RNA hybrid tools were performed to identify miR-190 targeted genes. Bio-logical roles of miR-190 target genes were revealed by GO and KEGG clustering analyses. qPCR analyzed the effects of nCeO2 exposure on the expression of miR-190 and MARK2 transcript levels in Daphnia magna. We found that the miR-190 sequences of 14 species were identical in 16 bases and that the miR-190 sequences were highly conserved during evolution. The 852 target genes of miR-190 are mainly located in the cell membrane and cytoplasm, and are enriched in biological processes such as intracellular signaling, DNA template and transcriptional regulation, protein phosphorylation, etc. Moreover, the target genes are involved in important intracellular signaling pathways such as cytosolization, ABC transporter and FoxO. After 24 and 48 h of nCeO2 exposure, the transcript expression of miR-190 was down-regulated in Daphnia magna, whereas the mRNA expression of MARK2 increased significantly. The results suggested that there was a negative regulatory relationship between miR-190 and MARK2 expression in Daphnia magna, and that miR-190 may affect related cellular life activities by regulating the transcriptional expression of MARK2. This study provides a scientific reference for analyzing the toxic effects of nCeO2 on aquatic invertebrates.
文章引用:周妍, 张园雯, 康欣怡, 刘琪, 刘淼, 吴琪, 王媛. 纳米氧化铈暴露下大型溞miR-190和MARK2基因的表达和功能分析[J]. 海洋科学前沿, 2023, 10(4): 285-296. https://doi.org/10.12677/AMS.2023.104029

1. 引言

纳米氧化铈(Nano cerium dioxide, nCeO2)是一类重要的金属氧化物工程纳米材料 [1] ,具有较高的表面积体积比、抗氧化性、光吸收电势等理化特征 [2] ,广泛应用于催化材料、燃料电池等工业和医药行业 [3] 。据推测,至2050年全球每年产生的nCeO2将达10,000吨,随着其大规模使用,约有300吨的纳米金属颗粒会经由工农业废水、污水处理、垃圾渗漏等多种途径被排放到水环境中 [4] [5] 。CeO2纳米颗粒可吸附在水生生物的体表,逐渐进入其体内细胞,并随着食物链(网)在其他水生生物体内不断富集,进而对水生动物甚至人类的生命健康造成潜在威胁 [6] 。

由于nCeO2的氧化还原特性和粒径的大小,其具有干扰水生生物生长、抑制水生动物胚胎发育、导致机体氧化损伤、破坏细胞功能等生物毒性效应。鱼腥藻(Anabaena cylindrica)暴露于80 mg/L nCeO2 24 h后,透射电镜结果显示鱼腥藻细胞壁表面被纳米颗粒覆盖,可能是藻细胞结构破坏及死亡的部分原因 [7] 。有研究表明暴露于nCeO2会导致斑马鱼(Danio rerio)、海胆(Paracentrotus lividus)等水生动物受精率降低,且胚胎发育畸形率和死亡率随纳米颗粒浓度的增加而增加 [8] [9] 。斑马鱼胚胎暴露于20 ppm及以上浓度的nCeO2,纳米颗粒蓄积在胚胎的内胚层内,诱导胚胎细胞内一氧化氮含量增加,最终导致斑马鱼胚胎发育异常或死亡 [10] 。羊角月牙藻(Pseudokirchneriella subcapitata)等藻类植物暴露于不同浓度的nCeO2,其生长受到影响 [11] [12] 。斜生栅藻(Scenedesmus obliquus)经低浓度(5 mg/L、10 mg/L)的nCeO2暴露可促进其生长,在中浓度(50 mg/L) nCeO2暴露下藻的生长开始受到抑制,当藻暴露于高浓度(100 mg/L、200 mg/L) nCeO2时,其生长收到极显著的抑制 [12] 。环境监测数据发现,在含有nCeO2的水体沉积物环境中暴露10天,底栖动物(Corophium volutator)出现机体细胞内DNA断裂,脂质过氧化程度严重,提示环境浓度的nCeO2导致水生动物机体出现了亚致死性的氧化损伤 [13] 。

微小RNA (MicroRNAs, miRNA)是真核生物体内的一类非编码的单链小分子RNA,长度约为20~26个核苷酸。miRNA在细胞分化和凋亡 [14] [15] 、生物生长发育 [16] 、免疫调节 [17] 以及生物对环境胁迫的应激反应 [18] 等方面发挥关键作用,其具体作用取决于特定的miRNA及其调控的靶基因。miRNA的主要功能是与靶基因(mRNA)分子结合,导致靶基因的降解或抑制靶基因的翻译 [19] 。因此,miRNA通过对靶基因的下调或上调作用,控制各种细胞内靶基因相关的重要生命活动 [20] 。重金属铜离子暴露下凡纳滨对虾(Litopenaeus vannamei)体内miR-1175ap、miR-46、miR-228和miR-8的表达发生了显著变化,这些miRNAs可调控免疫相关基因的表达,包括C型凝集素(CTL)、细胞色素p450 (CYP450)、凋亡抑制蛋白(IAP)等基因,表明miRNA可能参与了重金属暴露对虾机体应激反应的调控 [21] 。在重金属镉离子的暴露下,鲤鱼体内与免疫相关的miR-217表达量升高,miR-217通过调控SIRT1和NF-kB通路途径,加重机体的炎症反应,证实重金属镉对鲤鱼有免疫毒性 [22] 。据报道,在5 µg/L和50 µg/L镉暴露96 h后,在紫贻贝(Mytilus galloprovincialis)各组织中检测到107个已知的miRNAs和32个新的miRNAs,其中一些miRNAs与免疫防御、细胞凋亡、脂质和代谢相关的靶基因在镉暴露下发生了显著变化 [23] 。综上,在重金属铜、镉等污染胁迫下,miRNA参与调控细胞发育或凋亡、机体解毒代谢、改变机体耐受性等多个细胞生命活动,从而参与水生动物对污染物的毒性响应过程。

大型溞是水生食物网中的重要环节,具有分布广、生命周期短、繁殖力强、易于实验室培养、对水生环境中有毒物质敏感等特点,已成为水生生态毒理学研究的模式生物 [24] [25] [26] [27] 。目前,nCeO2及其他水体污染物对水生动物生理生化指标和基因表达方面的研究已有不少 [13] [22] ,而miRNA在暴露于nCeO2的水生动物中的作用的研究尚未见报道。miR-190是真核生物基因组中高度保守的miRNA,通过调控相关靶基因参与细胞增殖、迁移和侵袭等重要生命活动 [20] 。miR-190的靶基因MARK2 (microtubule affinity regulating kinase 2),别名Par-1,是细胞中的一种丝氨酸/苏氨酸蛋白激酶,参与微管相关蛋白的磷酸化,在神经分化、神经变性、细胞极性、细胞内转运和细胞迁移等细胞生命活动中起关键作用 [28] 。本研究以大型溞为实验对象,通过GO和KEGG注释分析miR-190的靶基因的生物学作用,研究nCeO2暴露对大型溞miR-190和MARK2基因转录表达的影响,以揭示大型溞miR-190和MARK2基因在纳米金属污染物毒性胁迫响应中的部分机制。

2. 材料与方法

2.1. 大型溞的培养和药物处理

本研究使用的大型溞来自于辽宁省水生生物重点实验室。大型溞的饲养温度为20℃ ± 2,光暗周期为12:12,饲养环境为1000毫升中等硬度的脱氯水。大型溞每周至少喂食三次栅藻(Scenedesmus sp.)。在nCeO2药物处理前,大型溞至少禁食12小时。实验中设计对照组和nCeO2药物处理组,nCeO2浓度设置为50 mg/L,每组进行4个实验重复,每个重复挑选50只大型溞。实验处理时间为24 h和48 h,在48 h暴露结束后,将个体冷冻在液氮中并保存在−80℃温度下,进行后续实验分析。

2.2. miR-190序列的保守性分析

大型溞miR-190序列来自于课题组前期nCeO2暴露下大型溞miRNA表达谱测序数据(https://dataview.ncbi.nlm.nih.gov/object/PRJNA995390),其序列为AGAUAUGUUUGAUAUUCUUGGUU。我们从miRbase数据库(http://mirbase.org/)中获取13种生物(斑马鱼、锦龟、文昌鱼、家蚕、非洲蟾蜍、河豚、家牛、三眼恐龙虾、原鸡、小鼠、黑猩猩、山羊和人类)的miR-190序列,与大型溞的miR-190序列用MEGA 7.0软件的Cluster W算法进行多重序列比对,用于分析miR-190序列在不同物种中的miR-190保守性。

2.3. miR-190靶基因预测和富集分析

利用TargetScan和miRanda在线工具,对miR-190进行了靶基因的预测。通过对两个软件数据的交叉进行筛选,确定了最终的靶基因范围。利用RNAhybrid鉴定miR-190与MARK2基因的靶向关系。通过GO数据库对miR-190靶基因集进行了功能注释。利用KEGG数据库,对miR-190靶基因集进行了代谢通路富集分析,富集显著性的p值为0.05。

2.4. qPCR

用TaKaRaMiniBEST Universal RNA Extraction Kit试剂盒(宝生物工程大连有限公司)提取来自大型溞的总RNA。在1.2%琼脂糖凝胶上分析RNA的完整性。使用Scientific nano drop 2000 (nano drop Technologies Wilmington, USA)检测样品总RNA的浓度和纯度。采用湖南艾科瑞生物工程有限公司提供的miRNA 1st strand cDNA synthesis kit和SYBR® Green Premix Pro Taq HS q-PCR Kit II (Rox Plus)试剂盒对大型溞的miR-190序列进行cDNA的反转录及荧光定量PCR扩增实验。MARK2基因表达用艾科瑞生物公司的Evo M-MLV RT Kit with gDNA Clean for qPCR对大型溞的总RNA进行反转录,获得大型溞的cDNA,用SYBR® Green Premix Pro Taq HS q-PCR Kit (Rox Plus)试剂盒进行MARK2荧光定量PCR扩增实验。qPCR在Applied BiosystemsTM 7500仪器进行,反应条件:95℃ 30 s,(95℃ 5 s 60℃ 20 s),40个循环。引物的设计、合成由上海生工生物工程公司完成,序列见表1。应用2–ΔΔct法计算大型溞miR-190和MARK2基因的相对表达量。

Table 1. qPCR primer sequences

表1. qPCR引物序列

2.5. 数据处理

使用Excel (T-TEST)、GraphPad 8.0.2 (one-way ANOVA)软件分析对照组和nCeO2处理组大型溞中miR-190和MARK2基因的表达变化。P < 0.05表明nCeO2处理组与对照组数据差异有统计学意义(用*表示),P < 0.01为差异显著(用**表示)。

3. 结果

3.1. miR-190序列的保守性分析

miRNA通常是通过其种子区(seed region),即5′端2-8位碱基与目的基因mRNA靶位点完全匹配结合。miR-190通过与目标基因mRNA的3′UTR区域碱基配对,给14个物种的miR-190序列5′端的种子序列(2~8位核苷酸)进行黄色标记见表2。利用MEGA7.0软件的Cluster W算法对包括大型溞在内的14个物种的miR-190序列进行了多序列比对,14种生物的miR-190序列由22 bp~24 bp核苷酸组成,其中大型溞的miR-190核苷酸序列长度为23 bp,而且14个物种的miR-190序列有16个核苷酸碱基全部一致,各物种序列仅有1~3个碱基的差异(图1),miR-190基因在生物进化过程中高度保守。

Table 2. Mature sequences of miR-190 in fourteen species

表2. 14个物种中miR-190 的成熟序列

注:黄色字母区域为miR-190基因的种子序列。

Figure 1. Alignment analysis of miR-190 mature sequences in fourteen species

图1. 14种物种中miR-190成熟序列的多序列比对

3.2. miR-190 靶基因富集分析

利用Targetscan和miRanda软件预测miR-190靶基因,并将两者获得的靶基因取交集,得到852个miR-190的靶基因。根据GO注释,按照靶基因数量降序排列,miR-190靶基因参与的生物过程包括信号转导(signal transduction)、转录调控(regulation of transcription)、DNA模板(DNA-templated)和蛋白质磷酸化(Protein phosphorylation)等。miR-190靶基因主要位于细胞膜(membrane)、细胞器膜(integral component of membrane)和细胞质(cytoplasm)中,分子功能主要包括与蛋白质结合(protein binding)、金属离子结合(metalion binding)和ATP结合(ATP binding)等(图2(a))。

(a)(b)

Figure 2. Gene enrichment analysis of target genes of miR-190 (a): GO annotation; (b): KEGG pathway

图2. miR-190靶基因的功能富集分析(a):GO的注释;(b):KEGG信号通路

利用KEGG数据库,我们将852个目标基因富集到125条信号通路中。以散点图的形式显示(图2(b))。点的颜色代表不同的P值,P值越小,富集效果越明显。miR-190靶基因在胞吞作用(Endocytosis)、其他类型的O-糖生物合成(Otner types of O-glycan biosynthesis)、苯丙氨酸代谢(Phenylalanine metabolism)、ABC转运器(ABC transporters)和FoxO信号通路(FoxO signaling pathway)中富集程度最高(图2(b))。

3.3. nCeO2暴露对大型溞miR-190和和MARK2表达水平的影响

将大型溞暴露于50 mg/L nCeO2 24 h和48 h后,与对照组相比,miR-190的表达均下降(图3(a))。将大型溞暴露于50 mg/L nCeO2 24 h后,与对照组相比,MARK2基因的mRNA表达上调,而连续暴露48 h后,MARK2的mRNA表达量显著上调(图3(b))。

(a) (b)

Figure 3. Effects of nCeO2 exposure on the expression of miR-190 and the target gene MARK2 in Daphnia magna (a): Expression of miR-190; (b): Expression of MARK2

图3. nCeO2暴露对大型溞miR-190和靶基因MARK2表达的影响(a):miR-190的表达量;(b):MARK2的表达量

4. 讨论

随着nCeO2在工业、环境和生物医学领域的广泛应用,其可通过不同途径释放到水环境中 [29] 。nCeO2进入水体后会蓄积在水生动物肠道、肝脏、肾脏等组织器官 [30] [31] 。大型溞、斑马鱼等水生动物接触纳米金属颗粒后,其细胞中基因的表达、能量代谢、细胞生长等正常生命活动受到干扰,引发生命活动异常,最终导致水生生物的生长、发育和生殖障碍以至死亡 [30] [32] [33] 。毒理学研究报道,nCeO2对水生动物的毒性效应包括急性、慢性毒性 [34] 、生殖毒性 [35] 、遗传毒性 [36] 和神经毒性 [37] 。nCeO2对水生动物的毒性效应受到其粒径大小、暴露浓度、作用时间、生物种类以及生物生存环境的理化条件等因素的影响 [38] [39] 。Birgit等人通过对不同粒径、不同浓度、不同时间nCeO2暴露下大型溞的急性、慢性毒性实验数据进行分析,发现尺寸 < 25 nm的nCeO2在10 mg/L浓度及以下的暴露对大型溞没有表现出明显的急性毒性;大型溞暴露于10 mg/L的nCeO2第七天后才逐渐出现较多的动物死亡的现象 [34] 。这个现象提示nCeO2对生物的毒性大小与其在生物体内蓄积的时间和程度相关。有研究发现通过线性拟合的方法,可以看到nCeO2在大型溞体内主要以Ce(IV)的形式存在,大约有3%转化为Ce(III) [40] 。有研究证明微溶解于水的Ce3+可吸附在莱茵衣藻(Chlamydomonas reinhardtii)的细胞壁上,并逐渐被微藻细胞吸收,进而影响藻细胞的光和作用 [41] 。因此nCeO2的生物毒性效应有可能与吸附在体表的纳米颗粒对大型溞活动的抑制以及摄入大型溞体内的纳米颗粒自身或释放毒性更强的Ce3+离子引发。

miRNA主要通过与靶基因3′端非编码区序列的互补配对来调控靶基因表达,miRNA与其靶基因存在负调控关系。细胞内高表达的miRNA可促进其靶基因的mRNA降解或抑制转录后的靶基因蛋白质的翻译过程 [42] 。miR-190是一条在动物中序列高度保守的miRNA,位于基因 Talin2的内含子中 [43] ,miR-190主要参与调节肠道菌群 [44] 、脂肪能量代谢 [45] 以及对重金属胁迫的反应 [46] ,找到miR-190的靶基因是揭示其在水生动物中生物学功能的关键。为了探讨miR-190在nCeO2胁迫大型溞中的作用机制,我们首先进行了miR-190的保守性和靶基因的功能富集分析。我们在大型溞、斑马鱼等14种动物miR-190序列的多序列比对结果中发现,各物种全长约22~24 bp的miR-190核苷酸序列碱基差异很小,各物种miR-190的16个碱基完全一致(图1),说明在无脊椎动物到脊椎动物的进化过程中,miR-190序列高度保守。miR-190靶基因筛选鉴定结果发现,miR-190可靶向数百个不同的mRNA (图2图3),包括已经过双荧光素酶和免疫蛋白印迹实验验证的MARK2 [47] 、PHLPP1 [48] 、IGF1 [49] 、PRDM16 [50] 、IL-1R1 [51] 等基因。本研究通过GO注释发现,miR-190的靶基因主要存在细胞膜和细胞质中,参与了信号转导、DNA模板和转录调控和蛋白质磷酸化等生物学过程,具有与金属离子结合、蛋白质结合和ATP结合的分子功能。miR-190的靶基因主要聚类于胞吞作用、其他类型的O-聚糖生物合成、苯丙氨酸代谢等KEGG pathway信号通路(图2)。以上结果表明miR-190对生物生命活动的调控是一个miR-190-靶基因调控网络参与的复杂的过程。

为了检测miR-190是否通过对靶基因MARK2的调控,参与大型溞对nCeO2胁迫的分子响应,我们将大型溞暴露于50.0 mg/L的nCeO2溶液24 h和48 h后,利用qPCR检测nCeO2暴露下大型溞miR-190与MARK2基因mRNA的表达情况。实验发现不同时间的nCeO2暴露后,大型溞体内的miR-190的表达均显著低于对照组(图3(a)),表明miR-190可能在大型溞对nCeO2毒性作用的响应过程中发挥作用。miR-190通过下调靶基因IL-1R1表达,激活NF-κB信号通路,抑制过度免疫,维持免疫系统的稳定性,Dong等报道鮸鱼(Miichthys miiuy)的miR-190通过下调靶基因IL-1R1表达,激活NF-κB信号通路,抑制机体的过度免疫,维持鮸鱼免疫系统的稳定性,证明miR-190参与鮸鱼机体免疫和炎症反应的调控 [51] 。miR-190在凡纳滨对虾(Litopenaeus vannamei)中参与脂质代谢,其靶基因E3 ubiquitin-protein ligase DTX2表达上调,可能是对虾脂质代谢调节的重要机制 [52] 。PINK1-parkin信号轴是目前机制研究最为透彻的线粒体自噬信号通路,研究发现miR-190可以调控PINK1-parkin信号轴上的PTEN参与线粒体自噬 [53] 。MARK2基因上调可以激活PINK1,进而激活PINK1/Parkin信号通路,从而调节多种细胞活动,促进细胞存活,以便适应不良环境 [54] 。本研究中大型溞在50 mg/L nCeO2暴露下MARK2的mRNA高表达,推测nCeO2可能会激活PINK1-parkin通路相关的细胞生命活动;而大型溞在nCeO2暴露下miR190表达量降低,证实了大型溞miR-190与MARK2基因mRNA的负调控关系(图3(b))。

5. 结论

综上所述,本研究通过对miR-190序列的保守性及靶基因的功能富集分析,发现miR-190在进化上高度保守,推测miR-190可通过靶基因参与大型溞机体细胞内一系列生物学过程和相关基因的调控,如物质代谢、信号转导、胞吞作用等。nCeO2暴露诱导大型溞miR-190的差异表达,负调控MARK2基因mRNA的表达水平,推测nCeO2的致毒效应部分是与大型溞miR-190和MARK2信号轴细胞信号转导失调相关,导致MARK2基因参与的细胞凋亡等生命活动紊乱。本研究为进一步解析nCeO2暴露对水生动物的分子毒性效应提供了基础数据。

基金项目

本论文由国家自然科学基金(42077226)和辽宁省教育厅项目(LJKMZ20221102)资助。

NOTES

*通讯作者。

参考文献

[1] You, G., Hou, J., Xu, Y., et al. (2021) Surface Properties and Environmental Transformations Controlling the Bioaccu-mulation and Toxicity of Cerium Oxide Nanoparticles: A Critical Review. Reviews of Environmental Contamination and Toxicology, 253, 155-206.
https://doi.org/10.1007/398_2020_42
[2] Hoecke, K., Quik, J.T., Mankiewicz-Boczek, J., et al. (2009) Fate and Effects of CeO2 Nanoparticles in Aquatic Ecotoxicity Tests. Environmental Science & Technol-ogy, 43, 4537-4546.
https://doi.org/10.1021/es9002444
[3] Dahle, J.T. and Arai, Y. (2015) Environmental Geo-chemistry of Cerium: Applications and Toxicology of Cerium Oxide Nanoparticles. International Journal of Environ-mental Research and Public Health, 12, 1253-1278.
https://doi.org/10.3390/ijerph120201253
[4] Keller, A.A. and Lazareva, A. (2013) Predicted Releases of Engi-neered Nanomaterials: From Global to Regional to Local. Environmental Science & Technology Letters, 1, 65-70.
https://doi.org/10.1021/ez400106t
[5] Piccinno, F., Gottschalk, F., Seeger, S. and Nowack, B. (2012) Industrial Production Quantities and Uses of Ten Engineered Nanomaterials in Europe and the World. Journal of Nanoparticle Re-search, 14, Article No. 1109.
https://doi.org/10.1007/s11051-012-1109-9
[6] Zhang, W., Pu, Z., Du, S., et al. (2016) Fate of Engineered Ceri-um Oxide Nanoparticles in an Aquatic Environment and Their Toxicity toward 14 Ciliated Protist Species. Environmental Pollution, 212, 584-591.
https://doi.org/10.1016/j.envpol.2016.03.011
[7] Rodea-Palomares, I., Boltes, K., Fernandez-Pinas, F., et al. (2011) Physicochemical Characterization and Ecotoxicological Assessment of CeO2 Nanoparticles Using Two Aquatic Microorganisms. Toxicological Sciences, 119, 135-145.
https://doi.org/10.1093/toxsci/kfq311
[8] 陈昱, 樊燕, 舒凡, 等. 纳米氧化铈对斑马鱼胚胎早期发育毒性[J]. 中国职业医学, 2020, 47(1): 48-52.
[9] Manzo, S., Miglietta, M. L., Rametta, G., et al. (2013). Embryotoxicity and Spermiotoxicity of Nanosized ZnO for Mediterranean Sea Urchin Paracentrotus lividus. Journal of Hazardous Materi-als, 254-255, 1-9.
https://doi.org/10.1016/j.jhazmat.2013.03.027
[10] Ozel, R.E., Alkasir, R.S., Ray, K., et al. (2013) Comparative Evaluation of Intestinal Nitric Oxide in Embryonic Zebrafish Exposed to Metal Oxide Nanoparticles. Small, 9, 4250-4261.
https://doi.org/10.1002/smll.201301087
[11] Manier, N., Garaud, M., Delalain, P., Aguerre-Chariol, O. and Pandard, P. (2011) Behaviour of Ceria Nanoparticles in Standardized Test Media—Influence on the Results of Ecotoxi-cological Tests. Journal of Physics: Conference Series, 304, Article ID: 012058.
https://doi.org/10.1088/1742-6596/304/1/012058
[12] 钟秋, 何桢, 戴安琪, 等. 纳米二氧化铈对斜生栅藻的毒性研究[J]. 农业环境科学学报, 2012, 31(2): 299-305.
[13] Dogra, Y., Arkill, K.P., Elgy, C., et al. (2016) Cerium Oxide Nanoparticles Induce Oxidative Stress in the Sediment-Dwelling Amphipod Corophium volutator. Nanotoxicology, 10, 480-487.
https://doi.org/10.3109/17435390.2015.1088587
[14] Chen, L., Li, Y.S., Cui, J., et al. (2014) MiR-206 Controls the Phenotypic Modulation of Pulmonary Arterial Smooth Muscle Cells Induced by Serum from Rats with Hepatopul-monary Syndrome by Regulating the Target Gene, Annexin A2. Cellular Physiology and Biochemistry, 34, 1768-1779.
https://doi.org/10.1159/000366377
[15] Yuan, J., Xiao, G., Peng, G., et al. (2015) MiRNA-125a-5p Inhibits Glio-blastoma Cell Proliferation and Promotes Cell Differentiation by Targeting TAZ. Biochemical and Biophysical Research Communications, 457, 171-176.
https://doi.org/10.1016/j.bbrc.2014.12.078
[16] 牛黛醇, 李效宇. MicroRNA在鱼类胚胎发育中的调控作用[J]. 四川动物, 2015, 34(6): 948-954.
[17] Xu, X.M. and Zhang, H.J. (2016) miRNAs as New Molecular Insights into In-flammatory Bowel Disease: Crucial Regulators in Autoimmunity and Inflammation. World Journal of Gastroenterology, 22, 2206-2218.
https://doi.org/10.3748/wjg.v22.i7.2206
[18] Wang, Y., Liao, X.L., Chen, K., et al. (2022) Analysis of the miRNA Expression Profile of Laboratory Red Crucian Carp under Low-Dose Caesium-137 Irradiation. Ecotoxicology, 31, 1276-1286.
https://doi.org/10.1007/s10646-022-02578-8
[19] Carthew, R.W. and Sontheimer, E.J. (2009) Origins and Mecha-nisms of miRNAs and siRNAs. Cell, 136, 642-655.
https://doi.org/10.1016/j.cell.2009.01.035
[20] Jia, W.Z., Yu, T., An, Q., et al. (2016) MicroRNA-190 Regulates FOXP2 Genes in Human Gastric Cancer. OncoTargets and Therapy, 9, 3643-3651.
https://doi.org/10.2147/OTT.S103682
[21] Guo, H., Lu, Z.C., Zhu, X.W., et al. (2018) Differential Expression of microRNAs in Hemocytes from White Shrimp Litopenaeus vannamei under Copper Stress. Fish & Shellfish Immunolo-gy, 74, 152-161.
https://doi.org/10.1016/j.fsi.2017.12.053
[22] Li, H., Di, G., Zhang, Y., et al. (2021) miR-217 through SIRT1 Regulates the Immunotoxicity of Cadmium in Cyprinus carpio. Comparative Biochemistry and Physiology Part C: Tox-icology & Pharmacology, 248, Article ID: 109086.
https://doi.org/10.1016/j.cbpc.2021.109086
[23] Yu, D., Peng, Z., Wu, H., et al. (2021) Stress Responses in Ex-pressions of microRNAs in Mussel Mytilus galloprovincialis Exposed to Cadmium. Ecotoxicology and Environmental Safety, 212, Article ID: 111927.
https://doi.org/10.1016/j.ecoenv.2021.111927
[24] 刘建超, 马雨辰, 张凌玉, 等. 红霉素对大型溞生殖、生长和基因表达的生态毒理效应[J]. 生态学报, 2022, 42(19): 8105-8113.
[25] 程瑞雪, 邓斌, 王亚玲, 等. 大型溞(Daphnia magna)线粒体基因组的测定与序列分析[J]. 湖泊科学, 2016, 28(2): 414-420.
[26] 王茜, 郭鹄飞, 王兰. 镉对大型溞摄食能力和相关生理指标的影响[J]. 水生生物学报, 2018, 42(3): 616-621.
[27] Forró, L., Ko-rovchinsky, N.M., Kotov, A.A. and Petrusek, A. (2007) Global Diversity of Cladocerans (Cladocera; Crustacea) in Freshwater. Hydrobiologia, 595, 177-184.
https://doi.org/10.1007/s10750-007-9013-5
[28] Matenia, D. and Man-delkow, E.M. (2009) The Tau of MARK: A Polarized View of the Cytoskeleton. Trends in Biochemical Sciences, 34, 332-342.
https://doi.org/10.1016/j.tibs.2009.03.008
[29] Nasser, F., Constantinou, J. and Lynch, I. (2020) Nano-materials in the Environment Acquire an “Eco-Corona” Impacting Their Toxicity to Daphnia Magna—A Call for Updat-ing Toxicity Testing Policies. Proteomics, 20, e1800412.
https://doi.org/10.1002/pmic.201800412
[30] 许伊, 杨士红, 尤国祥, 等. 纳米二氧化铈的潜在生态风险及毒性作用机制研究进展[J]. 生态毒理学报, 2021, 16(1): 43-55.
[31] Tomczyk-Wydrych, I. (2019) Metal Nanoparticles in Surface Waters—A Risk to Aquatic Organisms. Safety & Fire Technology, 54, 70-88.
https://doi.org/10.12845/sft.54.2.2019.5
[32] Sugantharaj David, E.M.D., Madurantakam Royam, M., Rajamani Sekar, S.K., et al. (2017) Toxicity, Uptake, and Accumulation of Nano and Bulk Cerium Oxide Particles in Artemia sa-lina. Environmental Science and Pollution Research, 24, 24187-24200.
https://doi.org/10.1007/s11356-017-9975-4
[33] Auguste, M., Balbi, T., Montagna, M., et al. (2019) In vivo Im-munomodulatory and Antioxidant Properties of Nanoceria (nCeO2) in the Marine Mussel Mytilus galloprovincialis. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 219, 95-102.
https://doi.org/10.1016/j.cbpc.2019.02.006
[34] Gaiser, B.K., Biswas, A., Rosenkranz, P., et al. (2011) Effects of Silver and Cerium Dioxide Micro- and Nano-Sized Particles on Daphnia magna. Journal of Environmental Monitoring, 13, 1227-1235.
https://doi.org/10.1039/c1em10060b
[35] Wu, D., Zhang, J., Du, W., Yin, Y. and Guo, H.Y. (2022) Toxicity Mechanism of Cerium Oxide Nanoparticles on Cyanobacteria Microcystis aeruginosa and Their Ecological Risks. Envi-ronmental Science and Pollution Research, 29, 34010-34018.
https://doi.org/10.1007/s11356-021-18090-1
[36] Shukla, R.K., Badiye, A., Vajpayee, K. and Kapoor, N. (2021) Genotoxic Potential of Nanoparticles: Structural and Functional Modifications in DNA. Frontiers in Genetics, 12, Article 728250.
https://doi.org/10.3389/fgene.2021.728250
[37] Villa, S., Maggioni, D., Hamza, H., et al. (2020) Natural Molecule Coatings Modify the Fate of Cerium Dioxide Nanoparticles in Water and Their Ecotoxicity to Daphnia magna. Environ-mental Pollution, 257, Article ID: 113597.
https://doi.org/10.1016/j.envpol.2019.113597
[38] Sendra, M., Volland, M., Balbi, T., et al. (2018) Cytotoxicity of CeO2 Nanoparticles Using in vitro Assay with Mytilus galloprovincialis Hemocytes: Relevance of Zeta Potential, Shape and Biocorona Formation. Aquatic Toxicology, 200, 13-20.
https://doi.org/10.1016/j.aquatox.2018.04.011
[39] Yang, L., Xu, H., Yang, M., et al. (2013) Research Progress on Toxicity of Manufactured Nanomaterials to Aquatic Organisms. Journal of Fishery Sciences of China, 20, 902-909.
https://doi.org/10.3724/SP.J.1118.2013.00902
[40] 王婧坤, 马宇辉, 赵鑫, 等. 纳米二氧化铈对蛋白核小球藻和大型溞的毒性及其在大型溞体内的形态转化[J]. 生态毒理学报, 2016, 11(1): 362-368.
[41] Kosak Nee Rohder, L.A., Brandt, T., Sigg, L. and Behra, R. (2018) Uptake and Effects of Cerium (III) and Cerium Oxide Nanoparticles to Chlamydomonas reinhardtii. Aquatic Toxicology, 197, 41-46.
https://doi.org/10.1016/j.aquatox.2018.02.004
[42] Stefani, G. and Slack, F.J. (2008) Small Non-Coding RNAs in Animal Development. Nature Reviews Molecular Cell Biology, 9, 219-230.
https://doi.org/10.1038/nrm2347
[43] Zheng, H., Chu, J., Zeng, Y., Loh, H.H. and Law, P.Y. (2010) Yin Yang 1 Phosphorylation Contributes to the Differential Effects of μ-Opioid Receptor Agonists on microRNA-190 Expression. Journal of Biological Chemistry, 285, 21994-22002.
https://doi.org/10.1074/jbc.M110.112607
[44] Liu, L., Wang, H., Yu, Y., et al. (2020) Microbial Regulation of a lincRNA-miRNA-mRNA Network in the Mouse Hippocampus. Epigenomics, 12, 1377-1387.
https://doi.org/10.2217/epi-2019-0307
[45] Dooley, J. and Liston, A. (2012) Molec-ular Control over Thymic Involution: From Cytokines and microRNAto Aging and Adipose Tissue. European Journal of Immunology, 42, 1073-1079.
https://doi.org/10.1002/eji.201142305
[46] Xu, P., Guo, H., Wang, H., et al. (2019) Identification and Profiling of microRNAs Responsive to Cadmium Toxicity in Hepatopancreas of the Freshwater Crab Sinopotamon henanense. Hereditas, 156, Article No. 34.
https://doi.org/10.1186/s41065-019-0110-z
[47] Chu, H.W., Cheng, C.W., Chou, W.C., et al. (2014) A Novel Es-trogen Receptor-microRNA 190a-PAR-1-Pathway Regulates Breast Cancer Progression, a Finding Initially Suggested by Genome-Wide Analysis of Loci Associated with Lymph-Node Metastasis. Human Molecular Genetics, 23, 355-367.
https://doi.org/10.1093/hmg/ddt426
[48] Xiong, Y., Wu, S., Yu, H., et al. (2018) miR-190 Promotes HCC Prolif-eration and Metastasis by Targeting PHLPP1. Experimental Cell Research, 371, 185-195.
https://doi.org/10.1016/j.yexcr.2018.08.008
[49] 宋默, 刘攀, 席姗姗, 等. miR-190的表达下调有利于抑制结直肠癌[J]. 基因组学与应用生物学, 2017, 36(11): 4432-4437.
[50] 彭丹丹, 李言. MicroRNA-190调控衰老相关的脂肪能量代谢稳态[J]. 南京医科大学学报(自然科学版), 2021, 41(12): 1728-1734.
[51] Dong, W., Geng, S., Cui, J., et al. (2022) MicroRNA-103 and microRNA-190 Negatively Regulate NF-κB-Mediated Immune Responses by Target-ing IL-1R1 in Miichthys miiuy. Fish & Shellfish Immunology, 123, 94-101.
https://doi.org/10.1016/j.fsi.2022.02.043
[52] Shi, X., Zhang, R., Liu, Z., et al. (2023) Combined Analysis of mRNA and miRNA Reveals the Mechanism of Pacific White Shrimp (Litopenaeus vannamei) under Acute Alkalinity Stress. PLOS ONE, 18, e0290157.
https://doi.org/10.1371/journal.pone.0290157
[53] Jin, Z., Piao, L., Sun, G., et al. (2020) Long Non-Coding RNA PART1 Exerts Tumor Suppressive Functions in Glioma via Sponging miR-190a-3p and Inactivation of PTEN/AKT Pathway. OncoTargets and Therapy, 13, 1073-1086.
https://doi.org/10.2147/OTT.S232848
[54] Matenia, D. and Mandelkow, E.M. (2014) Emerging Modes of PINK1 Signaling: Another Task for MARK2. Frontiers in Molecular Neuroscience, 7, Article 87846.
https://doi.org/10.3389/fnmol.2014.00037