撤稿:GaAs/AlGaAs核壳结构纳米线阵列太阳能电池的设计
Design of GAas/AlGaAsCore/Shell Nanowire Array Solar Cells
DOI: 10.12677/MP.2018.83010, PDF, HTML, 下载: 1,404  浏览: 2,599  科研立项经费支持
作者: 聂奎营*, 胡总华:兴义民族师范学院,物理与工程技术学院,贵州 兴义
关键词: 太阳能电池GaAs/AlGaAs核壳结构纳米线阵列时域有限差分法光吸收效率Solar Cells GaAs/AlGaAscore/Shell Nanowire Array Finite-Difference Time-Domain Method Optical Absorption Efficiency
摘要:

撤稿声明:GaAs/AlGaAs核壳结构纳米线阵列太阳能电池的设计”一文刊登在20185月出版的《现代物理》2018年第8卷第3期第82-88上。因作者疏忽,文章部分内容有待进一步确认。根据国际出版流程,编委会现决定撤除此稿件,保留原出版出处:

聂奎营,胡总华. GaAs/AlGaAs核壳结构纳米线阵列太阳能电池的设计[J]. 现代物理, 2018, 8(3): 82-88. https://doi.org/10.12677/MP.2018.83010

更多撤稿细节:文章页面(https://www.hanspub.org/journal/PaperInformation.aspx?paperID=24908)。完整撤稿声明已置于撤稿文章之前。

文章引用:  

参考文献

[1] Garnett, E. and Yang, P. (2008) Silicon Nanowire Radial p-n Junction Solar Cells. Journal of the American Chemical Society, 28, 9224-9225.
https://doi.org/10.1021/ja8032907
[2] Tang, J., Huo, Z. and Brittman, S. (2011) Solution-Processed Core-Shell Nanowires for Efficient Photovoltaic Cells. Nature Nanotechnology, 6, 568-572.
https://doi.org/10.1038/nnano.2011.139
[3] Agrawal, M. and Peumans, P. (2008) Broadband Optical Enhancement through coherent Light Trapping in Thin-Film Photovoltaic Cells. Optics Express, 8, 5385-5396.
https://doi.org/10.1364/OE.16.005385
[4] Piccione, B., Cho, C.H., Van Vugt, L.K., et al. (2012) All-Optical Active Switching in Individual Semiconductor Nanowires. Nature Nanotechnology, 7, 640-645.
https://doi.org/10.1038/nnano.2012.144
[5] Ren, F.F., Xu, W.Z., Ye, J.D., et al. (2014) Second-Order Surface-Plasmon Assisted Responsivity Enhancement in Germanium Nano-Photodetectors with Bull’s Eye Antennas. Optics Express, 22, 15949-15956.
https://doi.org/10.1364/OE.22.015949
[6] Krogstrup, P., Jorgensen, H., Heiss, M., et al. (2013) Single-Nanowire Solar Cells beyond the Shockley-Queisser Limit. Nature Photonics, 7, 306-310.
https://doi.org/10.1038/nphoton.2013.32
[7] Mokkapati, S. and Jagadish, C. (2016) Review on Photonic Properties of Nanowires for Photovoltaics. Optics Express, 24, 17345-17358.
https://doi.org/10.1364/OE.24.017345
[8] Yan, R., Gargas, D. and Yang, P. (2009) Nanowire Photonics. Nature Photonics, 3, 569-576.
https://doi.org/10.1038/nphoton.2009.184
[9] Casadei, A., Pecora, E.F., Trevino, J., et al. (2014) Photonic-Plasmonic Coupling of GaAs Single Nanowires to Optical Nanoantennas. Nano Letters, 14, 2271-2278.
https://doi.org/10.1021/nl404253x
[10] Tian, B., Zheng, X., Kempa, T., et al. (2007) Coaxial Silicon Nanowires as Solar Cells and Nanoelectronic Power Sources. Nature, 449, 885-889.
https://doi.org/10.1038/nature06181
[11] Mariani, G., Scofield, A., Hung, C., et al. (2013) GaAs Nanopillar-Array Solar Cells Employing In Situ Surface Passivation. Nature Communication, 4, 1479.
[12] Garnett, E.C., Brongersma, M.L., Cui, Y., et al. (2011) Nanowire Solar Cells. Annual Review of Materials Research, 41, 269-295.
https://doi.org/10.1146/annurev-matsci-062910-100434
[13] Lumerical Company, Lumerical FDTD Solution. https://kb.lumerical.com
[14] http://www.filmetrics.com/refractive-index-database
[15] Wen, L., Li, X.H., Zhao, Z.F., et al. (2012) Theoretical Consideration of III-V Nanowire/Si Triple Junction Solar Cells. Nanotechnology, 23, 505202.
https://doi.org/10.1088/0957-4484/23/50/505202