地球同步卫星向日葵8号多频道大气运动向量
Multi-Channel Atmospheric Motion Vectors Deduced from Geostationary Satellite Himawari-8
DOI: 10.12677/AG.2017.74060, PDF, HTML, XML, 下载: 1,646  浏览: 4,050 
作者: 周鉴本:“中央气象局”四组,台湾 台北
关键词: 多频道大气运动向量Multi-Channels Atmospheric Motion Vectors
摘要: 日本地球同步卫星向日葵8号上,具有多个可用于推导大气运动向量的观测频道,其中包括可见光频道、红外线窗区频道、6.2、7.0及7.3微米三个水汽频道。因此建立多频道卫星推导大气运动向量系统,以求得较大范围与较高频率观测的大气风场信息,弥补传统探空于洋面或偏远地区的不足,作为天气分析或数值预报之运用。此系统推导的大气运动向量比对探空风场以计算其误差,定量上结果显示,大气运动向量的误差比数值预报模式6小时风场误差为大,但与6小时风场误差的差距约只在1 m/s左右。
Abstract: Several useful observations, which include visible channel, infrared window and three water vapor channels (6.2, 7.0 and 7.3 mu), could be used to derive the atmospheric motion vectors on board geostationary satellite Himawari-8. Given the high frequency and spatial resolution of these observations, we built a procedure to derive the atmospheric motion vectors by using multi-channel from geostationary satellite Himawari-8. This product can provide observed circulation information for weather analysis or data assimilation in the area where the traditional observations are rare. The estimation of atmospheric motion vectors error by radiosonde data found that the error of atmospheric motion vector is higher than 6 hours forecast wind fields from regional model with value about 1 m/s. It means that the atmospheric motion vectors derived from our procedure have potential for applications in weather analysis or forecast.
文章引用:周鉴本. 地球同步卫星向日葵8号多频道大气运动向量[J]. 地球科学前沿, 2017, 7(4): 586-597. https://doi.org/10.12677/AG.2017.74060

参考文献

[1] Bedka, K.M., Velden, C.S., Petersen, R.A., Feltz, W.F. and Mecikalski, J.R. (2009) Comparisons of Satellite-Derived Atmospheric Motion Vectors, Rawinsondes, and NOAA Wind Profiler Observations. Journal of Applied Meteorology and Climatology, 48, 1542-1561.
https://doi.org/10.1175/2009JAMC1867.1
[2] Cordoba, M., Dance, S.L., Kelly, G.A., Nichols, N.K. and Waller, A. (2017) Diagnosing Atmospheric Motion Vector Observation Errors for an Operational High-Resolution Data Assimilation System. Quarterly Journal of the Royal Meteorological Society, 143, 333-341.
https://doi.org/10.1002/qj.2925
[3] Velden, C. and Bedka, K. (2009) Identifying the Uncertainty in Determining Satellite-Derived Atmospheric Motion Vectors Vector Height Attribution. Journal of Applied Meteorology and Climatology, 48, 450-463.
https://doi.org/10.1175/2008JAMC1957.1
[4] Goerss, J.S. (2009) Impact of Satellite Observation on the Tropical Cyclone Track Forecasts of the Navy Operational Global Atmospheric Prediction System. Monthly Weather Review, 137, 41-50.
https://doi.org/10.1175/2008MWR2601.1
[5] Langland, R.H., Velden, C., Pauley, P.M. and Berger, H. (2009) Impact of Satellite-Derived Rapid-Scan Wind Observation on Numerical Model Forecasts of Hirricane Katrina. Monthly Weather Review, 137, 1615-1622.
https://doi.org/10.1175/2008MWR2627.1
[6] 河惠卿, 王振会, 等. 三种云导风数据及其对台风数值预报影响实验的比较分析[J]. 热带气象学报, 2009, 25(1): 82-87.
[7] Wu, T.-C., Venlden, C.S., Majumdar, S.J., Liu, H. and Anderson, J.L. (2015) Understanding the Influence of Assimilating Subsets of Enhanced Atmospheric Motion Vectors on Numerical Analyses and Forecasts of Tropical Cyclone Track and Intensity with an Ensemble Kalman Filter. Monthly Weather Review, 143, 2506-2350.
https://doi.org/10.1175/MWR-D-14-00220.1
[8] Velden, C., et al. (2005) Recent Innovations in Deriving Tropospheric Winds from Meteorological Satellites. Bulletin of the American Meteorological Society, 86, 205-223.
[9] Nieman, S.J., Menzel, W.P., Hayden, C.M., Gray, D., Wanzong, S.T., Velden, C.S. and Anniels, J. (1997) Fully Automated Cloud-Drift Wind in NESDIS Operations. Bulletin of the American Meteorological Society, 78, 1121-1133.
[10] 周鉴本. 地球同步卫星向日葵8号水汽频道推算高层大气运动向量[J]. 地球科学前沿, 2017, 7(2): 142-150.