利用接收函数研究龙门山断裂带及邻区地壳厚度(H)和波速比(K)
Crustal Thickness (H) and Wave-Velocity Ratio (K) along and surrounding the Longmenshan Fault from Receiver Function
DOI: 10.12677/AG.2017.72019, PDF, HTML, XML, 下载: 1,628  浏览: 4,955  科研立项经费支持
作者: 张小涛, 龙海云:中国地震台网中心,北京
关键词: 接收函数龙门山断裂带地壳厚度波速比Receiver Function Longmenshan Fault Crustal Thickness Wave-Velocity Ratio
摘要: 对龙门山断裂带及其邻近地区27个地震台站的记录提取远震P波接收函数,并应用H-K叠加方法,求得每个台站下方的地壳厚度和波速比。研究区域地壳厚度总体变化是,从东往西地壳增厚。扬子地块地壳厚度变化较为平缓,厚度在41~48 km之间;龙门山断裂带南北段地壳厚度存在差异,南段比北段厚3~9 km;松潘–甘孜地块地壳较厚且变化剧烈,深度在49 km以上,且在东西方向上呈“凸”形展布;研究区波速比变化范围在1.68~1.88之间,其中汶川、井研和石棉地区波速比较高。
Abstract: Using teleseismic data recorded at 27 seismic stations in the region along and surrounding the Longmenshan fault zone, the P-wave receiver function were computed, and the crustal thicknesses and wave-velocity ratio were estimated by the H-K stacking method. The crustal thickness increases from east to west in the study area. The thickness of the crust of the Yangtze block is relatively flat, and the thickness is between 41 and 48 km. There is a difference of crustal thickness between north and south part of the Longmenshan fault, and the south part is deeper than the north about 3 - 9 km. The crust of Songpan Ganzi block is thicker and increases sharply. The depth is more than 49 km and it’s a convex distribution from east to west. In the study area, the wave velocity is between 1.68 and 1.88, and wave-velocity ratio values in Wenchuan, Jingyan and Shimian is higher.
文章引用:张小涛, 龙海云. 利用接收函数研究龙门山断裂带及邻区地壳厚度(H)和波速比(K)[J]. 地球科学前沿, 2017, 7(2): 172-180. https://doi.org/10.12677/AG.2017.72019

参考文献

[1] Langston, C.A. (1979) Structure under Mount Rainier, Washington, Inferred from Teleseismic Body Waves. Journal of Geophysical Research, 84, 4749-4762.
[2] Ammon, C.J. (1991) The Isolation of Receiver Effects from Teleseismic P Waveforms. Bulletin of the Seismological Society of America, 81, 2504-2510.
[3] 刘启元, Kind, R., 李顺成. 接收函数复谱比的最大或然性估计及非线性反演[J]. 地球物理学报, 1996, 39(4): 502- 513.
[4] 吴庆举, 李永华, 张瑞青, 等. 用多道反褶积方法测定台站接收函数[J]. 地球物理学报, 2007, 50(3): 791-796.
[5] Gurrola, H., Baker, G.E. and Minster, J.B. (2010) Simultaneous Time-Domain Deconvolution with Application to the Computation of Receiver Functions. Geophysical Journal International, 120, 537-543.
[6] Ligorria, J.P. and Ammon, C.J. (1999) Iterative Deconvolution and Receiver Functions Estimation. Bulletin of the Seismological Society of America, 89, 1395-1400.
[7] Park, J. and Levin, V. (2000) Receiver Functions from Multiple-Taper Spectral Correlation Estimates. Bulletin of the Seismological Society of America, 90, 1507-1520.
https://doi.org/10.1785/0119990122
[8] 吴庆举, 田小波, 张乃玲, 等. 用Wiener滤波方法提取台站接受函数[J]. 中国地震, 2003, 19(1): 41-47.
[9] 吴庆举, 田小波, 张乃玲, 等. 计算台站接受函数的最大熵谱反褶积方法[J]. 地震学报, 2003, 25(4): 382-389.
[10] Owens, T.J., Zandt, G. and Taylor, S.R. (1984) Seismic Evidence for an Ancient Rift beneath the Cumberland Plateau, Tennessee: A Detailed Analysis of Broadband Teleseismic P Waveforms. Journal of Geophysical Research, 89, 7783- 7796.
https://doi.org/10.1029/JB089iB09p07783
[11] Ammon, C.J., Randall, G.E. and Zandt, G. (1990) On the Non-Uniqueness of Receiver Function Inversions. Journal of Geophysical Research, 95, 303-315.
[12] Ammon, C.J. and Zandt, G. (1993) The Receiver Structure Beneath the Southern Mojave Block. Bulletin of the Seismological Society of America, 83, 737-755.
[13] Shibutani, T., Sambridge, M. and Kennett, B. (1996) Genetic Algorithm Inversion for Receiver Functions with Application to Curst and Uppermost Mantle Structure beneath Eastern Australia. Geophysical Research Letters, 23, 1829- 1832.
[14] 高星, 王卫民, 姚振兴. 中国及邻近地区地壳结构[J]. 地球物理学报, 2005, 48(3): 591-601.
[15] Mitra, S., et al. (2005) Crustal Structure and Earthquake Focal Depths beneath Northeastern India and Southern Tibet. Geophysical Journal International, 160,227-248.
https://doi.org/10.1111/j.1365-246x.2004.02470.x
[16] Wang, H.L., Zhu, L.P. and Chen, H.W. (2010) Moho Depth Variation in Taiwan from Teleseismic Receiver Functions. Journal of Asian Earth Sciences, 37, 286-291.
[17] 徐强, 赵俊猛, 崔仲雄, 等. 利用接收函数研究青藏高原东南缘的地壳上地幔结构[J]. 地球物理学报, 2009, 52(12): 3001-3008.
[18] 罗艳, 崇加军, 倪四道, 等. 首都圈地区莫霍面起伏及沉积层厚度[J]. 地球物理学报, 2008, 51(4): 1135-1145.
[19] 段永红, 张先康, 刘志, 等. 长白山-镜泊湖火山区地壳结构接收函数研究[J]. 地球物理学报, 2005, 48(2): 352- 358.
[20] 刘文学, 刘贵忠, 周刚, 等. 新疆和周边地区地壳厚度和Vp/Vs比值变化的接收函数约束[J]. 地球物理学报, 2011, 54(8): 2034-2041.
[21] Zhu, L. and Kanamori, H. (2000) Moho Depth Variation in Southern California from Teleseismic Receiver Functions. Journal of Geophysical Research, 105, 2969-2980.
https://doi.org/10.1029/1999JB900322
[22] 王椿镛, 楼海, 姚志祥, 等. 龙门山及其邻区的地壳厚度和泊松比[J]. 第四纪研究, 2010, 30(4): 652-661.
[23] 徐锡伟, 闻学泽, 叶建青, 等. 汶川Ms8.0地震地表破裂带及其发震构造[J]. 地震地质, 2008, 30(3): 597-629.
[24] 李勇, 黄润秋, Densmore, A.L., 等. 龙门山小鱼洞断裂在汶川地震中的地表破裂及地质意义[J]. 第四纪研究, 2009, 29(3): 502-512.
[25] 宋文杰, 朱介寿, 程先琼, 等. 汶川Ms8.0级地震震源区地壳深部结构研究[J]. 第四纪研究, 2010, 30(4): 670-676.
[26] 江晓涛, 程先琼, 宋文杰, 等. 用H-Kappa方法反演龙门山断裂带及其邻区的莫霍面深度及波速比分布[J]. 防灾科技学院学报, 2012, 14(3): 12-17.
[27] 沈旭章, 梅秀萍, 杨辉. 汶川地震破裂带地壳速度结构研究[J]. 地球物理学进展, 2011, 26(2): 477-488.
[28] 龙锋, 倪四道, 闻学泽. 用远震接收函数研究龙门山断裂带及其邻区的莫霍面深度及波速比分布[J]. 地球学报, 2011, 32(4): 438-446.
[29] 楼海, 王椿镛, 吕智勇, 等. 2008年汶川Ms8.0级地震的深部构造环境[J]. 中国科学D辑, 2008, 38(10): 1207- 1220.
[30] Christansen, N. (1996) Poisson’s Ratio and Crustal Seismology. Journal of Geophysical Research, 101, 3139-3156.
https://doi.org/10.1029/95JB03446