祁连山老虎沟流域冰川下垫面地表特征参数变化特征
Changes of the Characteristic Parameters on Glacial Surface of the Laohugou Basin in the Qilian Mountains
DOI: 10.12677/AG.2017.72012, PDF, HTML, XML, 下载: 1,685  浏览: 3,100  国家自然科学基金支持
作者: 李莎, 束炯:华东师范大学地理科学学院,华东师范大学地理信息科学重点实验室(教育部),上海;傅俐, 孙维君:山东师范大学地理与环境学院,山东 济南
关键词: 老虎沟流域冰川积累区整体空气动力学法地表特征参数Laohugou Basin The Glacier Accumulation Area The Overall Aerodynamic Research Method The Surface Characteristic Parameters
摘要: 冰川近地层地表特征参数是冰川表面能量-物质平衡模型的基础,影响冰川消融模拟的精度,因此开展近地层地表特征参数研究对于准确探讨冰川对气候变化的响应具有重要意义。本论文以祁连山西段典型大陆型冰川——老虎沟12号冰川为例,分析了老虎沟流域的气象变化特征位于冰川积累区海拔5040 m自动气象站资料,确定了消融区冰川表面地表动量和热量粗糙度,动量拖曳系数,热量输送系数,感热和潜热通量输送等地表特征参数及其变化规律,结果表明:(1) 动力学地表粗糙度6~9月月均值分别为2.4、2.1、0.7和0.6mm,热传输附加阻尼(kB−1)具有明显日循环,在正午时分出现最小;(2) 大气层结稳定状态时,动量拖曳系数和热量输送系数6-9月月均值分别为0.001, 0.0009, 0.001和0.001,大气层结不稳定时,两系数都为0.0022;(3) 感热通量绝大多数时间为正值,潜热通量绝大多数时间为负值,两者可相互抵消,观测期间两者的平均值分别为10.4和−12.3 W∙m−2
Abstract: Characteristic parameters of glacier near ground surface based on the glacier surface energy and material balance model have an important influence on the simulation accuracy of glacier ablation. It is significant to study the characteristic parameters of the near surface for the investigation of glacier response to climate change. The changing meteorological characteristics around the Laohugou No. 12 glaciers, as a typical example of continental glacier, have been studied based on the data of automatic meteorological station located at the 5040 m altitude of glacier accumulation area in the west section of Qilian Mountains. And then, the corresponding characteristic parameters including the roughness of momentum and heat, momentum drag coefficient, heat transfer coefficient, and sensible and latent heat flux near glacier surface layer have been analyzed. First, the results showed that the average value of aerodynamic surface roughness attained 2.4, 2.1, 0.7 and 0.6 mm respectively among June to September. The value of heat transfer additional damping (kB−1) presented an obvious daily cycle with a minimum at midday. Second, under different atmospheric conditions, the results presented that the average of momentum drag coefficient and heat transfer coefficient attained 0.001, 0.0009, 0.001 and 0.001 respectively when the atmosphere stratification was stable, otherwise these two coefficients were all 0.002 in the same period. Finally, the flux analysis indicated that the sensible and latent heat flux were always positive and negative, and the average value with 10.4 and −12.3 W∙m−2, respectively, which could offset each other during the studied period.
文章引用:李莎, 傅俐, 孙维君, 束炯. 祁连山老虎沟流域冰川下垫面地表特征参数变化特征[J]. 地球科学前沿, 2017, 7(2): 110-126. https://doi.org/10.12677/AG.2017.72012

参考文献

[1] IPCC (2013) Climate Change 2013: The Physical Science Basis. Cambridge University Press, Cambridge, New York.
[2] 王宗太. 中国冰川目录Ⅰ: 祁连山区[M]. 兰州: 中国科学院兰州冰川冻土研究所, 1981.
[3] 施雅风. 简明中国冰川编目[M]. 上海: 上海科学普及出版社, 2005.
[4] 施雅风. 中国冰川概论[M]. 北京: 科学出版社,1988.
[5] Taylor, G.I. (1935) Statistical Theory of Turbulence, Parts l-4. Proceedings of the Royal Society A, 151, 421-444.
[6] Kolmogorov, A.N. (1941) The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Number. Doklady Akademii Nauk SSSR, 30, 301-305.
[7] Monin, A.S. and Obukhov, A.M. (1954) Basic Laws of Turbulent Mixing in the Surface Layer of the Atmosphere. Trudy Geofizicheskogo Instituta, Akademiya Nauk SSSR, 24, 163-187.
[8] Smith, S.D. and Banke, E.G. (1975) Variation of the Sea Surface Drag Coefficient with Wind Speed. Quarterly Journal of the Royal Meteorological Society, 101, 665-673.
[9] Sethu Raman, S.S. and Raynor, G.S. (1975) Surface Drag Coefficient Dependence on the Aerodynamics Roughness of the Sea. Journal of Geophysical Research, 80, 4983-4988.
[10] 林忠, 卞林根, 马永锋, 逯昌贵. 南极中山站附近冰盖近地面层湍流参数的观测研究[J]. 极地研究, 2009, 21(3): 221-233.
[11] 张强, 卫国安. 荒漠戈壁大气总体曳力系数和输送系数观测研究[J]. 高原气象, 2004, 23(3): 305-312.
[12] 中国科学院高山冰雪利用研究队. 祁连山现代冰川考察报告[M]. 北京: 科学出版社, 1958.
[13] 王仲祥, 谢自楚, 伍光和. 祁连山冰川的物质平衡[C]//中国科学院兰州冰川冻土研究所集刊, 第5号(祁连山冰川变化及利用). 北京: 科学出版社, 1985.
[14] 杜文涛, 秦翔, 刘宇硕, 等. 1958-2005年祁连山老虎沟12号冰川变化特征研究[J]. 冰川冻土, 2008, 30(3): 373-379.
[15] 孙维君. 祁连山老虎沟12号冰川积累区消融期能量平衡特征[M]. 兰州市: 中国科学院寒区旱区环境与工程研究所, 2011.
[16] 马永锋. 南极中山站至Dome-A考察断面近地层特征参数的研究[M]. 北京: 中国气象科学研究院, 2009.
[17] Wagnon, P., Sicart, J.E., Berthier, E. and Chazarin, J.P. (2003) Winter Time High-Altitude Surface Energy Balance of a Bolivian Glacier, Illimani, 6340M above Sea Level. Journal of Geophysical Research, 108, 4177.
https://doi.org/10.1029/2002JD002088
[18] Holtslag, A.A. and Mandde Bruin, H.A.R. (1988) Applied Modeling of the Night Time Surface Energy Balance Overland. Journal of Applied Meteorology, 27, 689-704.
https://doi.org/10.1175/1520-0450(1988)027<0689:AMOTNS>2.0.CO;2
[19] DyerA, J. (1974) Are View of Flux-Profiler Elation Ships. Boundary-Layer Meteorology, 7, 363-372.
[20] 叶柏生, 杨大庆, 丁永建, 等. 中国降水观测误差分析以及修正[J]. 地理学报, 2007, 61(1): 3-13.
[21] 高登义. 珠穆朗玛峰绒布河谷的冰川风[J]. 冰川冻土, 1985, 7(3): 249-256.
[22] Favier, V., Wagnon, P., Chazarin, J.P., Maisincho, L. and Coudrain, A. (2004) One-Year Measurements of Surface Heat Budget on the Ablation Zone of Antizana Glacier 15, Ecuadorian Andes. Journal of Geophysical Research, 2004, D18105.