利用酵母单杂交文库技术筛选银杏端粒结合蛋白
Screening Telomere Binding Proteins from Ginkgo biloba L. Using Yeast One-Hybrid Library
DOI: 10.12677/BR.2016.52009, PDF, HTML, XML, 下载: 2,554  浏览: 9,319  国家自然科学基金支持
作者: 蒋璐瑶, 李丽红, 要笑云, 张强, 撖静宜, 王莹, 李慧, 陆海, 刘頔:北京林业大学生物科学与技术学院,北京
关键词: 银杏端粒结合蛋白酵母单杂交文库酵母单杂交Ginkgo biloba L. Telomere Binding Protein Yeast One-Hybrid Library Yeast One-Hybrid
摘要: 目的:为了获得与银杏端粒结合序列相结合的端粒结合蛋白,为木本植物端粒结合蛋白的研究提供实验依据,从而丰富对银杏端粒的研究。方法:以银杏叶片为实验材料,利用酵母单杂交文库筛选获得可能为银杏端粒结合蛋白的基因片段,并通过GFP酵母单杂交实验验证获得基因片段与端粒序列的结合特异性。结果:使用端粒特异性结合序列(TTTAGGG)3的诱饵载体没有获得合适大小的扩增片段,而使用端粒特异性结合序列(TTTAGGG)5的诱饵载体成功获得52个扩增片段,这说明端粒DNA序列(TTTAGGG)3过短,不利用蛋白质的结合。比较这些扩增片段序列并去除相同序列,结果显示这52个扩增片段分别属于10个基因片段。对这10个基因片段进行进一步序列分析,并使用酵母单杂交技术验证,结果显示其中一个基因能够与银杏端粒序列特异性结合。结论:本研究通过酵母单杂交文库筛选,GFP酵母单杂交验证等实验方法建立了银杏端粒结合蛋白的筛选方法,并成功获得了一个和银杏端粒重复序列特异性结合的端粒结合蛋白。
Abstract: Objective: To provide a powerful experimental basis for the research of telomere binding proteins and telomeres in woody plants especially in Ginkgo, we investigated the telomere-binding proteins that bind with telomere sequence in ginkgo. Methods: Using Ginkgo leaves as experimental material, we obtained some gene sequences encoding telomere-binding proteins through yeast one-hybrid library screening technology, then verified their binding specificity by GFP yeast one- hybrid experiments. Results: We did not get any desired DNA sequences using bait vector contain telomere specificity sequence (TTTAGGG)3. However, we obtained 52 DNA sequences using bait carrier contain telomere specificity sequence (TTTAGGG)5 successfully. Our results suggested that the telomere specificity sequence (TTTAGGG)3 might be too short to binding any proteins. After removing repeat sequences, we found that 10 genes were encoded by these 52 DNA sequences through sequences analysis. One gene among them was confirmed that could bind with Ginkgo te-lomere specificity sequence. Through GFP yeast one-hybrid technology. Conclusion: Our study es-tablished a screening method to investigate telomere binding proteins in Ginkgo through yeast one-hybrid library screening and GFP yeast one-hybrid technology, and obtained a telomere binding protein which binding with Ginkgo telomere specificity sequence specifically.
文章引用:蒋璐瑶, 李丽红, 要笑云, 张强, 撖静宜, 王莹, 李慧, 陆海, 刘頔. 利用酵母单杂交文库技术筛选银杏端粒结合蛋白[J]. 植物学研究, 2016, 5(2): 55-65. http://dx.doi.org/10.12677/BR.2016.52009

参考文献

[1] Jacobs, B.P. and Browner, W.S. (2000) Ginkgo biloba: A Living Fossil. American Journal of Medicine, 108, 341-342.
http://dx.doi.org/10.1016/S0002-9343(00)00290-4
[2] Shakirov, E.V., Song, X., Joseph, J.A., et al. (2009) POT1 Proteins in Green Algae and Land Plants: DNA-Binding Properties and Evidence of Co-Evolution with Telomeric DNA. Nucleic Acids Research, 37, 7455-7467.
http://dx.doi.org/10.1093/nar/gkp785
[3] 慕莹, 赵晓燕, 景丹龙. 银杏不同组织器官及愈伤组织培养中端粒酶活性测定[J]. 北京林业大学学报, 2014, 36(3): 95-99.
[4] Yu, E.Y., Kim, S.E., Kim, J.H., et al. (2000) Se-quence-Specific DNA Recognition by the Myb-Like Domain of Plant Telomeric Protein RTBP1. The Journal of Bio-logical Chemistry, 275, 24208-24214.
http://dx.doi.org/10.1074/jbc.M003250200
[5] Hwang, M.G., Chung, I.K., Kang, B.G., et al. (2001) Sequence Specific Binding Protein 1 (AtTBP1). FEBS Letters, 503, 35-40.
http://dx.doi.org/10.1016/S0014-5793(01)02685-0
[6] Schrumpfova, P., Kuchar, M., Mikova, G., et al. (2004) Characterization of Two Arabidopsis thaliana Myb-Like Proteins Showing Affinity to Telomeric DNA Sequence. Ge-nome, 47, 316-324.
http://dx.doi.org/10.1139/g03-136
[7] Hirata, Y., Suzuki, C. and Sakai, S. (2004) Characte-rization and Gene Cloning of Telomere-Binding Protein from Tobacco BY-2 Cells. Plant Physiol Biochem, 42, 4-14.
http://dx.doi.org/10.1016/j.plaphy.2003.10.002
[8] 刘蕾, 胡旭东, 张强, 等. 毛白杨酵母单杂交体系的建立[J]. 南方农业学报, 2015, 46(3): 370-375.
[9] 王琪, 朱延明, 王冬冬. 酵母单杂交系统在植物基因工程研究中的应用[J]. 北京林业大学学报, 2008, 30(1): 141- 147.
[10] 朱雅新, 麻浩. 端粒和端粒酶的结构与功能及其应用[J]. 湖南农业大学学报, 2005, 31(1): 98-105.
[11] Shakirov, E.V., Salzberg, S.L., Alam, M. and Shippen, D.E. (2008) Analysis of Carica papaya Telomeres and Telomere- Associated Proteins: Insights into the Evolution of Telomere Maintenance in Brassicales. Tropical Plant Biology, 1, 202-215.
http://dx.doi.org/10.1007/s12042-008-9018-x
[12] Kuchar, M. (2006) Plant Telomere-Binding Proteins. Biologia Plantarum, 50, 1-7.
http://dx.doi.org/10.1007/s10535-005-0067-9
[13] Sue, S.C., Hsiao, H.H., Chung, B.C., et al. (2006) Solution Structure of the Arabidopsis thaliana Telomeric Repeat- Binding Protein DNA Binding Domain: A New Fold with an Additional C-Terminal Helix. Journal of Molecular Biology, 356, 72-85.
http://dx.doi.org/10.1016/j.jmb.2005.11.009
[14] Bianchi, A., Smith, S., Chong, L., et al. (1997) TRF1 Is a Dimer and Bends Telomeric DNA. The EMBO Journal, 16, 1785-1794.
http://dx.doi.org/10.1093/emboj/16.7.1785
[15] Wei, C. and Price, M. (2003) Protecting the Terminus: t-Loops and Telomere End-Binding Proteins. Cellular and Molecular Life Sciences CMLS, 60, 2283-2294.
http://dx.doi.org/10.1007/s00018-003-3244-z
[16] Baumann, P. and Cech, T.R. (2001) Pot1, the Putative Telomere End-Binding Protein in Fission Yeast and Humans. Science, 292, 1171-1175.
http://dx.doi.org/10.1126/science.1060036
[17] Regad, F., Lebas, M. and Lescure, B. (1994) Interstitial Telomeric Repeats within the Arabidopsis thaliana Genome. Journal of Molecular Biology, 239, 163-169.
http://dx.doi.org/10.1006/jmbi.1994.1360
[18] Zentgraf, U. (1995) Telomere-Binding Proteins of Arabidopsis thaliana. Plant Molecular Biology, 27, 467-475.
http://dx.doi.org/10.1007/BF00019314