溶栓后脑出血的相关危险因素的相关研究
Related Research on Risk Factors for Cerebral Hemorrhage after Thrombolysis
DOI: 10.12677/acm.2024.1441262, PDF, HTML, XML, 下载: 94  浏览: 143 
作者: 王振琪, 郭永明*:牡丹江医学院附属红旗医院,黑龙江 牡丹江
关键词: 脑梗死rt-PA炎症反应血脑屏障Stroke Recombinant Tissue-Type Plasminogen Activator Inflammatory Reaction Blood Brain Barrier
摘要: 对于发病在6小时内的患者,溶栓治疗已经成为首选,但目前针对溶栓后患者的预后尚不完全明确,其并发症的风险发生机制尚不明确,本文阐述近些年溶栓后的相关危险因素,希冀对以后的研究提供新思路。
Abstract: Thrombolytic therapy has become the first choice for patients who develop symptoms within 6 hours. However, the prognosis of patients after thrombolysis is not yet fully understood, and the risk mechanism of complications is not yet clear. This article elaborates on the relevant risk factors after thrombolysis in recent years, hoping to provide new ideas for future research.
文章引用:王振琪, 郭永明. 溶栓后脑出血的相关危险因素的相关研究[J]. 临床医学进展, 2024, 14(4): 2055-2059. https://doi.org/10.12677/acm.2024.1441262

1. 炎性细胞在溶栓后脑出血的作用

炎症本身和其引发的免疫反应可促进卒中后缺血组织的损伤,尤其表现在再灌注后引起的第二次损伤 [1] [2] [3] 。最近的一系列研究表明,炎症在溶栓过程中发挥重要的作用,如中性粒细胞计数可以预测重组组织型纤溶酶原激活剂(Recombinant tissue-type plasminogen activator, rt-PA)注射后的出血风险 [4] 。这项研究结果并不令人惊讶,因为中性粒细胞是产生活性氧(Hemorrhagic transformation, ROS)以及基质金属蛋白酶(Matrix metalloproteinase-9, MMP-9)最主要的炎症细胞 [5] [6] ,这两种物质是神经元损伤和血脑屏障破坏的两个强有力的驱动因素。其中MMP9可释放细胞因子、趋化因子、黏附分子等多种不同的蛋白水解酶,直接参与血脑屏障损伤和溶栓后出血(Hemorrhagic transformation, HT)的发生及发展。中性粒细胞还可以通过释放ROS,直接导致缺血区的细胞发生坏死,导致继发性的脑损伤 [7] 。这也是导致缺血性卒中后血脑屏障破坏和HT的关键病理因素之一。在卒中发生后,中性粒细胞还可以通过损伤相关分子模式(Damage-associated molecular patterns, DAMP) [8] [9] [10] 被激活并早期招募到缺血部位,并显示出更高的蛋白分解活性,参与了缺血性卒中的发展和预后。中性粒细胞参与rt-PA后炎症–免疫反应的机制远远不止于此。中性粒细胞和中性粒细胞细胞外陷阱(Neutrophil extracellular traps, NETs)影响rt-PA治疗缺血性卒中的效率、安全性和结果 [4] ,中性粒细胞是通过产生中性粒细胞丝氨酸蛋白酶(Neutrophil serine proteases, NSPs)、中性粒细胞弹性蛋白酶(Neutrophil elastase, NE)、组织蛋白酶G (Cathepsin G, CTSG),三种酶导致梗死、再灌注抵抗和出血转化 [11] [12] 。

其他炎性细胞的作用也不能忽视,虽然外周血中的白细胞、嗜酸性粒细胞仅仅只占总数的1%~8%,但它们在血管免疫系统中发挥着重要作用,并直接参与凝血和纤溶系统 [13] ,有趣的是,炎性细胞的作用呈现多样性,如炎症细胞即可以是卒中后神经功能恢复的关键驱动因素 [14] ,也可以是神经功能破坏的关键因素。来自Mikuzis P的研究显示入院时较高的嗜酸性粒细胞值和(或)比值与卒中的严重程度相关 [15] 并且降低静脉溶栓后发生出血性转化的风险 [16] 。并已知蛋白酶激活受体(Protease activated receptors, PAR)由嗜酸性粒细胞表达,并且可以被纤溶酶等蛋白酶激活 [13] 。PAR的激活会引起嗜酸性粒细胞形状变化,并导致活性氧(ROS)和半胱氨酰白三烯的生成 [17] ,从而增加血脑屏障(blood brain barrier, BBB)的通透性并有助于白细胞浸润,这也可引发溶栓后的脑出血。

在真实世界的研究中,Shi K的研究中,与rt-PA治疗前和对照组患者相比,早在给药后1小时,总白细胞和淋巴细胞计数就分别增加了约15%和19%。通过流式细胞仪进一步分析细胞亚群发现,中性粒细胞增加了31%;T细胞,包括CD4+T细胞增加了20%,CD8+T细胞增加了26% [12] ;他的研究直接表明,rt-PA可直接参与卒中后的炎症–免疫反应。同时他们的研究还指出tPA直接激活中性粒细胞和T细胞,从而加剧了tPA溶栓后血脑屏障的破坏[12]。有的研究表明,rt-PA上调脑血管内皮细胞上(matrix metallopeptidases, MMPs)的表达 [18] ,加速血管细胞外基质的降解,从而促进溶栓治疗后的出血。除了直接激活内皮细胞外,来自Shi K的研究还表明,rt-PA还能动员外周中性粒细胞和T细胞,使其迁移到脑血管系统。中性粒细胞和T细胞暴露于rt-PA后,会加剧血脑屏障的破坏,促进脑出血 [12] 。他们发现rt-PA对中性粒细胞和T细胞的作用需要膜联蛋白A2,并涉及下游的(mitogen-activated protein kinase, MAPK)通路。这些结果表明,rt-PA介导的神经血管炎症是缺血性卒中溶栓治疗后HT的新机制 [12] 。

2. 血脑屏障在溶栓后出血的作用

在最近的研究中表明,无论梗死面积大小,全身炎症都会损害血脑屏障的完整性 [4] 。这种变化是由BBB的通透性增加和血管基底层功能障碍引起的。BBB的结构是由内皮细胞、基底膜、神经胶质细胞组成的。内皮细胞被基底膜或基底板(Basement membrane, BM)包围 [19] 。在结构上,BM分为内皮BM和实质BM [20] ,这是依靠周细胞分隔将其分隔开。星形细胞的末端脚拥抱着BM,这进一步加强了BBB并帮助维持环境。BM主要由细胞外基质(ECM)蛋白组成,包括IV型胶原、纤连蛋白、层粘连蛋白和硫酸软骨蛋白多糖,例如基底膜聚糖和集聚蛋白 [20] [21] 。这些蛋白质提供结构支持和信号转导。神经胶质细胞同样也发挥着重要的作用,其中星形胶质细胞是最丰富的胶质细胞,负责维持大脑中的环境。星形细胞负责90%的血脑屏障,构成血脑屏障的最外层,控制血脑屏障的完整性,细胞与神经元的联系,以及离子和水的运输[21]。越来越多的证据表明,溶栓后,HT主要发生在BBB损伤的脑区 [22] [23] 。

最近的研究表明血管再通被认为是HT的危险因素。而静脉注射tPA治疗正是基于“再通假说”,其认为通过血栓溶解重新开放闭塞血管、改善局部再灌注以及随后挽救受威胁的脑组织对于改善急性缺血性中风的临床结果非常重要 [24] ,这已经在临床工作中得到证实,但当再灌注发生时,当血液渗入梗死区,就会发生HT。Rt-PA通过作用于内皮细胞、小胶质细胞和星形细胞末端的低密度脂蛋白受体相关蛋白-1 (Low density lipoprotein receptor-related protein, LRP1)。

来破坏血脑屏障的完整性 [25] 。故一旦在急性缺血性卒中发生后,血脑屏障的完整性就会被破坏。Rt-PA还激活血小板衍生生长因子(Platelet derived growth factor-CC PDGF-CC) [26] 和激肽释放酶 [27] ,从而促进血脑屏障的破坏。这是由于BBB的通透性增加和BM的功能障碍引起的。其发生的原因是多种因素的相互作用,可能的原因包括原始缺血性损伤、高血糖介导的血管氧化应激、神经炎症介导的损伤和tPA神经血管毒性。上述机制都是细胞外蛋白水解功能障碍-BBB损伤-HT这一途径的重要参与因素 [28] 。其中神经炎症介导的细胞外基质蛋白水解功能障碍是导致缺血性脑卒中后血脑屏障破坏的关键病理机制。这一机制主要通过促炎细胞因子升高、炎症细胞释放进入循环、炎症细胞与受损脑血管内皮的粘附以及随后的脑实质浸润来实现。同时使蛋白酶激活并释放 [29] 。也有研究表明,炎症细胞的主要分类为血液中的巨噬细胞和中性粒细胞,这两类细胞进入实质后会严重加剧神经炎症和脑损伤 [30] 。随着血脑屏障通透性的增加,炎症胞的迁移和渗透会进一步增加 [31] ,并导致细胞因子和MMPs的进一步诱导分化。MMP9可以通过降解脑微血管BM中的细胞外基质蛋白(如IV型胶原、层粘连蛋白、纤维连接蛋白等)以及内皮紧密连接蛋白(如ZO-1),这一分子机制在血脑屏障破坏中发挥关键作用 [32] 。随着研究的深入,高血糖可能会导致血管氧化应激,这种氧化应激会在再灌注损伤发生后很早就通过活性氧(ROS)的过量产生而发生。缺血性卒中期间氧化应激的产生是导致梗死脑组织中继发性血管源性水肿和HT的BBB破坏的关键事件,从而损害IV tPA诱导的再灌注的益处 [33] 。

3. 年龄在溶栓后出血的作用

与年轻患者相比,老年人的缺血性卒中的患病率更高,卒中相关的死亡率和致残率更高,溶栓治疗后相关的并发症发生的概率更高。尽管关于与年龄相关的脑梗死预后的相关研究结果是复杂的 [34] ,但越来越多的证据表明全身炎症反应可能是脑梗死患者死亡和行为恢复不良的原因,这种情况多见于老年人 [35] 。由于神经炎症反应是溶栓后脑实质损伤及神经功能预后的关键因素 [14] ,他们的实验评估了衰老对神经炎性反应的影响。在这项实验中,Ritzel RM的实验观察到发生卒中后不同年龄的白细胞群组成明显不同,单核细胞在年轻的脑卒中患者免疫反应中所占比例明显更大,而中性粒细胞是老年脑卒中患者的主要免疫细胞。他们为了评估这一点,进行了一系列的基础实验,以确定这些细胞在缺血大脑组织中的相对激活状态。他们发现在血液循环中单核细胞和中性粒细胞的吞噬能力随着年龄的增长而减弱。与年轻的单核细胞和中性粒细胞相比,衰老的中性粒细胞在缺血性脑中表现出显着更高的活性氧生成。同样,在卒中发生后衰老个体的中性粒细胞中MMP-9的产生量是单核细胞的两倍。在实验中,卒中后老年小鼠血液中循环中性粒细胞的百分比明显高于年轻小鼠,这充分说明年龄相关的神经缺陷恶化是与缺血后脑中循环和浸润炎症细胞的比例变化有关。在衰老个体的缺血脑组织中,中性粒细胞在碎片清除方面表现出显著的异常,研究发现,衰老的中性粒细胞表现出了更高的氧化应激水平,并提高了作用于血管重构且可以增加血脑屏障通透性酶的数量 [14] 。

因人类寿命的增加,卒中类疾病的病患人数亦有所增加。卒中类疾病可对患者神经功能造成不可逆转的损害,不仅仅造成患者躯体功能的缺失,更有可能带来患者精神上的伤害。此类疾病为全球患者及家庭带来沉重的负担。溶栓后的血管再通为有效的方法。但其出血的可能性于临床应用上稍显不足。本文希冀为临床工作提供新的视野。

参考文献

[1] Iadecola, C., Buckwalter, M.S. and Anrather, J. (2020) Immune Responses to Stroke: Mechanisms, Modulation, and Therapeutic Potential. The Journal of Clinical Investigation, 130, 2777-2788.
https://doi.org/10.1172/JCI135530
[2] Eltzschig, H.K. and Eckle, T. (2011) Ischemia and Reperfusion—From Mechanism to Translation. Nature Medicine, 17, 1391-1401.
https://doi.org/10.1038/nm.2507
[3] Jayaraj, R.L., Azimullah, S., Beiram, R., Jalal, F.Y. and Rosenberg, G.A. (2019) Neuroinflammation: Friend and Foe for Ischemic Stroke. Journal of Neuroinflammation, 16, Article No. 142.
https://doi.org/10.1186/s12974-019-1516-2
[4] Maestrini, I., Strbian, D., Gautier, S., et al. (2015) Higher Neutrophil Counts before Thrombolysis for Cerebral Ischemia Predict Worse Outcomes. Neurology, 85, 1408-1416.
https://doi.org/10.1212/WNL.0000000000002029
[5] Allen, C.L. and Bayraktutan, U. (2009) Oxidative Stress and Its Role in the Pathogenesis of Ischaemic Stroke. International Journal of Stroke, 4, 461-470.
https://doi.org/10.1111/j.1747-4949.2009.00387.x
[6] Rosell, A., Ortega-Aznar, A., Alvarez-Sabín, J., et al. (2006) Increased Brain Expression of Matrix Metalloproteinase-9 after Ischemic and Hemorrhagic Human Stroke. Stroke, 37, 1399-1406.
https://doi.org/10.1161/01.STR.0000223001.06264.af
[7] Manda-Handzlik, A. and Demkow, U. (2019) The Brain Entangled: The Contribution of Neutrophil Extracellular Traps to the Diseases of the Central Nervous System. Cells, 8, Article 1477.
https://doi.org/10.3390/cells8121477
[8] Otxoa-De-Amezaga, A., Gallizioli, M., Pedragosa, J., et al. (2019) Location of Neutrophils in Different Compartments of the Damaged Mouse Brain after Severe Ischemia/Reperfusion. Stroke, 50, 1548-1557.
https://doi.org/10.1161/STROKEAHA.118.023837
[9] Lux, D., Alakbarzade, V., Bridge, L., et al. (2020) The Association of Neutrophil-Lymphocyte Ratio and Lymphocyte-Monocyte Ratio with 3-Month Clinical Outcome after Mechanical Thrombectomy Following Stroke. Journal of Neuroinflammation, 17, Article No. 60.
https://doi.org/10.1186/s12974-020-01739-y
[10] Gong, P., Liu, Y., Gong, Y., et al. (2021) The Association of Neutrophil to Lymphocyte Ratio, Platelet to Lymphocyte Ratio, and Lymphocyte to Monocyte Ratio with Post-Thrombolysis Early Neurological Outcomes in Patients with Acute Ischemic Stroke. Journal of Neuroinflammation, 18, Article No. 51.
https://doi.org/10.1186/s12974-021-02090-6
[11] Amki, M.E., Glück, C., Binder, N., et al. (2020) Neutrophils Obstructing Brain Capillaries Are a Major Cause of No-Reflow in Ischemic Stroke. Cell Reports, 33, Article ID: 108260.
[12] Shi, K., Zou, M., Jia, D.M., et al. (2021) TPA Mobilizes Immune Cells That Exacerbate Hemorrhagic Transformation in Stroke. Circulation Research, 128, 62-75.
https://doi.org/10.1161/CIRCRESAHA.120.317596
[13] Coden, M.E. and Berdnikovs, S. (2020) Eosinophils in Wound Healing and Epithelial Remodeling: Is Coagulation a Missing Link. Journal of Leukocyte Biology, 108, 93-103.
https://doi.org/10.1002/JLB.3MR0120-390R
[14] Ritzel, R.M., Lai, Y.J., Crapser, J.D., et al. (2018) Aging Alters the Immunological Response to Ischemic Stroke. Acta Neuropathologica, 136, 89-110.
https://doi.org/10.1007/s00401-018-1859-2
[15] Wang, J., Ma, L., Lin, T., Li, S.J., Chen, L.L. and Wang, D.Z. (2017) The Significance of Eosinophils in Predicting the Severity of Acute Ischemic Stroke. Oncotarget, 8, 104238-104246.
https://doi.org/10.18632/oncotarget.22199
[16] Jucevičiūtė, N., Mikužis, P. and Balnytė, R. (2019) Absolute Blood Eosinophil Count Could Be a Potential Biomarker for Predicting Haemorrhagic Transformation after Intravenous Thrombolysis for Acute Ischaemic Stroke. BMC Neurology, 19, Article No. 127.
https://doi.org/10.1186/s12883-019-1359-6
[17] Bolton, S.J., McNulty, C.A., Thomas, R.J., Hewitt, C.R. and Wardlaw, A.J. (2003) Expression of and Functional Responses to Protease-Activated Receptors on Human Eosinophils. Journal of Leukocyte Biology, 74, 60-68.
https://doi.org/10.1189/jlb.0702351
[18] Wang, X., Lee, S.R., Arai, K., et al. (2003) Lipoprotein Receptor-Mediated Induction of Matrix Metalloproteinase by Tissue Plasminogen Activator. Nature Medicine, 9, 1313-1317.
https://doi.org/10.1038/nm926
[19] Goulay, R., Mena Romo, L., Hol, E.M. and Dijkhuizen, R.M. (2020) From Stroke to Dementia: A Comprehensive Review Exposing Tight Interactions between Stroke and Amyloid-β Formation. Translational Stroke Research, 11, 601-614.
https://doi.org/10.1007/s12975-019-00755-2
[20] Yao, Y. (2019) Basement Membrane and Stroke. Journal of Cerebral Blood Flow and Metabolism, 39, 3-19.
https://doi.org/10.1177/0271678X18801467
[21] Yang, C., Hawkins, K.E., Doré, S. and Candelario-Jalil, E. (2019) Neuroinflammatory Mechanisms of Blood-Brain Barrier Damage in Ischemic Stroke. American Journal of Physiology: Cell Physiology, 316, C135-C153.
https://doi.org/10.1152/ajpcell.00136.2018
[22] Jickling, G.C., Liu, D., Stamova, B., et al. (2014) Hemorrhagic Transformation after Ischemic Stroke in Animals and Humans. Journal of Cerebral Blood Flow and Metabolism, 34, 185-199.
https://doi.org/10.1038/jcbfm.2013.203
[23] Spronk, E., Sykes, G., Falcione, S., et al. (2021) Hemorrhagic Transformation in Ischemic Stroke and the Role of Inflammation. Frontiers in Neurology, 12, Article 661955.
https://doi.org/10.3389/fneur.2021.661955
[24] Whiteley, W.N., Thompson, D., Murray, G., et al. (2014) Targeting Recombinant Tissue-Type Plasminogen Activator in Acute Ischemic Stroke Based on Risk of Intracranial Hemorrhage or Poor Functional Outcome: An Analysis of the Third International Stroke Trial. Stroke, 45, 1000-1006.
https://doi.org/10.1161/STROKEAHA.113.004362
[25] Yepes, M., Sandkvist, M., Moore, E.G., Bugge, T.H., Strickland, D.K. and Lawrence, D.A. (2003) Tissue-Type Plasminogen Activator Induces Opening of the Blood-Brain Barrier via the LDL Receptor-Related Protein. The Journal of Clinical Investigation, 112, 1533-1540.
https://doi.org/10.1172/JCI200319212
[26] Su, E.J., Fredriksson, L., Geyer, M., et al. (2008) Activation of PDGF-CC by Tissue Plasminogen Activator Impairs Blood-Brain Barrier Integrity during Ischemic Stroke. Nature Medicine, 14, 731-737.
https://doi.org/10.1038/nm1787
[27] Simão, F., Ustunkaya, T., Clermont, A.C. and Feener, E.P. (2017) Plasma Kallikrein Mediates Brain Hemorrhage and Edema Caused by Tissue Plasminogen Activator Therapy in Mice after Stroke. Blood, 129, 2280-2290.
https://doi.org/10.1182/blood-2016-09-740670
[28] Wang, X.Y. and Eng, H.L. (2003) Triggers and Mediators of Hemorrhagic Transformation in Cerebral Ischemia. Molecular Neurobiology, 28, 229-244.
https://doi.org/10.1385/MN:28:3:229
[29] Simi, A., Tsakiri, N., Wang, P. and Rothwell, N.J. (2007) Interleukin-1 and Inflammatory Neurodegeneration. Biochemical Society Transactions, 35, 1122-1126.
https://doi.org/10.1042/BST0351122
[30] Gattringer, T., Valdes Hernandez, M., Heye, A., et al. (2020) Predictors of Lesion Cavitation after Recent Small Subcortical Stroke. Translational Stroke Research, 11, 402-411.
https://doi.org/10.1007/s12975-019-00741-8
[31] Okada, T. and Suzuki, H. (2017) Toll-Like Receptor 4 as a Possible Therapeutic Target for Delayed Brain Injuries after Aneurysmal Subarachnoid Hemorrhage. Neural Regeneration Research, 12, 193-196.
https://doi.org/10.4103/1673-5374.200795
[32] Peeyush Kumar, T., McBride, D.W., Dash, P.K., Matsumura, K., Rubi, A. and Blackburn, S.L. (2019) Endothelial Cell Dysfunction and Injury in Subarachnoid Hemorrhage. Molecular Neurobiology, 56, 1992-2006.
https://doi.org/10.1007/s12035-018-1213-7
[33] Kaur, J., Zhao, Z., Klein, G.M., Lo, E.H. and Buchan, A.M. (2004) The Neurotoxicity of Tissue Plasminogen Activator. Journal of Cerebral Blood Flow and Metabolism, 24, 945-963.
https://doi.org/10.1097/01.WCB.0000137868.50767.E8
[34] Dhungana, H., Malm, T., Denes, A., et al. (2013) Aging Aggravates Ischemic Stroke-Induced Brain Damage in Mice with Chronic Peripheral Infection. Aging Cell, 12, 842-850.
https://doi.org/10.1111/acel.12106
[35] Crapser, J., Ritzel, R., Verma, R., Venna, V.R. and Mccullough, L.D. (2016) Ischemic Stroke Induces Gut Permeability and Enhances Bacterial Translocation Leading to Sepsis in Aged Mice. Aging, 8, 1049-1060.
https://doi.org/10.18632/aging.100952