可溶性鸟苷酸环化酶–维利西呱用于心力衰竭的机制
The Mechanism of Soluble Guanylate Cyclase-Veliciguat for Heart Failure
DOI: 10.12677/ACM.2024.141086, PDF, HTML, XML, 下载: 147  浏览: 235 
作者: 王素梅:重庆医科大学第二临床学院,重庆;苏 立*:重庆医科大学附属第二医院心血管内科,重庆
关键词: 心力衰竭维利西呱作用机制Heart Failure Vericiguat Mechanism of Action
摘要: 维利西呱(Vericiguat)是第一个被批准用于治疗射血分数降低的有症状慢性心力衰竭(HFrEF)成人的口服可溶性鸟苷酸环化酶(sGC)刺激剂。心力衰竭仍然是老年人的高患病率高死亡率疾病,给卫生保健系统带来了重大的经济负担。现目前心力衰竭一线治疗包括β受体阻滞剂、血管紧张素转换酶抑制剂(ACEi)、血管紧张素受体阻滞剂(ARBs)、盐皮质激素受体拮抗剂(MRA)等。有最新研究表明可溶性鸟苷酸环化酶刺激剂维利西呱能通过修饰一氧化氮-sGC-环磷酸鸟苷(sCG)级联反应进而改善心力衰竭(或射血分数减低)患者预后。为了提高临床医生对维利西呱在心力衰竭治疗中的认识,促进维利西呱在心力衰竭治疗中的实际应用,本文就维利西呱缓解心力衰竭的机制进行综述。
Abstract: Vericiguat is the first oral soluble guanylate cyclase (sGC) stimulator approved for the treatment of adults with symptomatic chronic heart failure (HFrEF) with reduced ejection fraction. Heart failure remains a high-prevalence and mortality disease in older people, placing a significant economic burden on health care systems. At present, the first-line treatment of heart failure includes β-blockers, angiotensin-converting enzyme inhibitors (ACEi), angiotensin receptor blockers (ARBs), mineralocorticoid receptor antagonists (MRA), etc. Recent studies have shown that the soluble guanylate cyclase stimulator vericiguat can improve the prognosis of patients with heart failure (or reduced ejection fraction) by modifying the nitric oxide-sGC-cyclic guanosine monophosphate (sCG) cascade. In order to improve clinicians’ understanding of the role of vericiguat in the treatment of heart failure and promote the practical application of vericiguat in the treatment of heart failure, this article reviews the mechanism of vericiguat in the treatment of heart failure.
文章引用:王素梅, 苏立. 可溶性鸟苷酸环化酶–维利西呱用于心力衰竭的机制[J]. 临床医学进展, 2024, 14(1): 622-629. https://doi.org/10.12677/ACM.2024.141086

1. 引言

Table 1. Part of the clinical study of veliciguat for heart failure

表1. 维利西呱针对心力衰竭的部分临床研究

心力衰竭即由结构性和/或功能性心脏异常引起的症状和/或体征的临床综合征,并由利钠肽水平升高和/或肺或全身充血的客观证据证实,最常见的原因包括心肌缺血、高血压、心肌病、瓣膜损伤、肺动脉高压和先天性心脏病 [1] 。尽管护理的进步降低了心力衰竭患者的死亡率和发病率,但这些患者的预后仍然很差,从而对社会和经济造成严重的负面影响。sGC刺激剂是心力衰竭管理的一种新兴治疗选择,维利西呱是首个被批准上市的sGC刺激剂 [2] 。它们通过刺激sGC活性(在心力衰竭患者中降低)起作用,对心肌和血管功能有潜在的益处。近年来的大量临床试验表明(表1),sGC刺激剂维利西呱可能具有心脏保护作用,在VICTORIA (Vericiguat全球射血分数降低的心力衰竭受试者研究)试验中被证明可以改善HFrEF患者的结局 [3] 。与慢性HFrEF的标准治疗相比,维利西呱降低了心血管原因死亡或心力衰竭首次住院的综合风险。这主要是由于心力衰竭住院人数减少(而不是死亡率)。维利西呱在这些患者中通常耐受性良好,并且特殊不良事件(如症状性低血压和昏厥)的发生率较低,并且在维利西呱和安慰剂接受者之间相似 [4] 。因此,对于近期发生恶化事件的有症状的慢性HFrEF患者,维利西呱是一种有效且耐受性良好的治疗选择。在这篇简短的综述中,我们讨论了在HFrEF患者中维利西呱的作用机制及潜在优势。

2. 病理生理学机制(如图1)

在心力衰竭(HF)患者中已被证明内皮功能障碍和活性氧会降低NO生物利用度,导致相对sGC缺乏和cGMP合成减少 [9] 。sGC是其内源性配体一氧化氮(NO)的细胞内受体。NO在生理刺激(例如层流剪切力)以及心内膜内在内皮细胞中产生。NO扩散到邻近组织,如血管或心肌细胞,并刺激sGC在这些细胞中产生cGMP [10] 。sGC衍生的cGMP的缺乏导致心肌功能障碍和内皮依赖性血管收缩调节受损,包括心肌微循环。sGC介导的cGMP的产生对于正常的心脏和血管功能至关重要 [9] [11] [12] 。在HF患者中,与冠状动脉微血管功能障碍、心肌细胞僵硬、间质纤维化以及最终心肌功能障碍相关的sGC活性降低被认为是 HF心肌功能障碍进展的驱动因素,这些机制不能通过目前建立的调节神经体液阻滞和后负荷减少的疗法直接解决。维利西呱具有双重作用模式,有助于纠正在晚期HF中观察到的相对cGMP缺乏症,它通过稳定NO-sGC结合使sGC对内源性NO敏感,来增强NO的作用。它还独立于NO通过不同的结合位点直接刺激sGC,导致心肌细胞和血管平滑肌细胞中细胞内cGMP的增加,导致平滑肌松弛和血管舒张,直接影响心肌功能和血管张力 [13] [14] 。

Figure 1. Mechanism of veliciguat

图1. 维利西呱作用机制

3. 心血管作用(如图2)

1) 全身和肺血管舒张减轻心室后负荷

一氧化氮是调节血管张力的重要介质之一,维利西呱靶向NO-sGC-cGMP血管舒张通路,且与一氧化氮供体药物不同,可以直接刺激sGC增加cGMP的生成和血管舒张,而不需要一氧化氮 [15] 。此外,维利西呱还能协同提高sGC对低水平生物可利用一氧化氮的敏感性 [13] 。维利西呱的双重作用于NO-sGC-cGMP通路导致平滑肌细胞cGMP升高,从而使全身和肺血管舒张,这可以减少血液流动的阻力,降低血压,减轻心脏的负荷。维利西呱耐受性良好,没有任何明显的药物相关严重不良事件,但有临床试验表明,大剂量使用时,维利西呱药物副作用的发生率增加,包括晕厥、低血压和贫血 [16] 。

2) 预防甚至逆转左心室重构

在HF中,有几种代偿机制被激活以维持组织灌注。这些包括通过Frank-Starling机制增加心输出量,通过心室重构增加左室容量和心室壁厚度,以及激活神经激素系统。所有这些代偿机制的组织效应都是由第二信使环腺苷酸单磷酸(cAMP)介导的。维利西呱可通过增强激活cGMP信号通路抑制心脏和血管重构来抵消肾素–血管紧张素–醛固酮和交感神经系统的作用,同时增加cGMP可以通过激活磷酸二酯酶2的异构体来降低cAMP。减少cAMP或增强cGMP信号转导的策略可能会有附加甚至协同效应,可能有更好的结果。cGMP水平的升高与心脏收缩性的改善有关,因为心肌收缩更有力,泵血更有效。因此,心肌肥厚是由于慢性压力超载引起的心肌增厚,而vericiguat可以减轻此类心肌肥厚。通过减少肥厚,维利西呱能有助于防止或逆转心脏的病理结构重塑,从而改善心脏功能。

3) 直接的抗纤维化作用

左心室纤维化发生在进展为心力衰竭的早期,是该心力衰竭综合征中有价值的治疗靶点。纤维化包括心脏和血管系统,对舒张和收缩功能都有影响。纤维化会导致心肌僵硬,阻碍抽吸和充盈,舒张早期抽吸的丧失可能对心力衰竭患者的运动能力受损产生重大有害影响 [17] 。临床前模型中的低剂量sGC刺激已被证明还具有直接的抗纤维化作用,在没有任何血流动力学效应的情况下改善心肌重塑和舒张。在兔房颤模型和细胞模型中,维利西呱显著改善I型胶原、III型胶原、ST2水平等细胞表达水平,还逆转了扩大的心房,显著减少心肌纤维化 [18] 。

4) 降低肺动脉高压

肺动脉高压是射血分数保留的心力衰竭(HF-PEF)的血流动力学后果,据报道,在流行病学队列中的患病率为53%~83%;参加临床试验的患者患病率可能较低 [19] [20] 。肺动脉高压与较高的HF-PEF患者死亡率有关,可以假设它是导致HF-PEF进展中的活动性病理生理因素,而不仅仅是继发于左心功能障碍。事实上,无论是毛细血管前病变(与肺小动脉重塑、内膜纤维化或肺动脉张力反应性增加有关)或者毛细血管后(肺静脉高压)成分均有可能会导致 HF-PEF 患者的肺动脉高压 [19] 。因此,肺血管床(包括内皮功能障碍)可能是HF-PE的新治疗靶点。在多项临床试验中 [21] ,鸟苷酸环化酶刺激显著改善了肺动脉高压患者的临床结局包括血流动力学变量和运动能力及肺血管阻力、N末端脑利钠肽前体(NT-proBNP)水平的变化、世界卫生组织(WHO)功能分级、临床恶化时间、Borg呼吸困难量表评分、生活质量变量和安全性。sGC刺激剂里西呱已被批准用于治疗肺动脉高压和慢性血栓栓塞性肺动脉高压 [22] 。

5) 改善血管损伤或氧化应激

内皮功能障碍在HF发病机制中起着核心作用,衰竭心脏的特征是氧化还原状态改变,活性氧过量产生。在HF中,神经体液激活,从心肌释放炎症信使,以及改变的局部剪切力调节基因表达并促进动脉粥样硬化发生,增加氧化应激和减少NO的产生,由此产生的内皮功能障碍触发细胞因子产生的增加,这些过程最终导致NO生物利用度降低和内皮功能障碍恶化,这反过来传播HF的发展和进展。这些异常已成为HF发生和进展的常见病理生理因素,也与HF危险因素有关 [23] 。在临床前实验中,局部应用sGC刺激剂YC-1通过cGMP依赖机制抑制血管平滑肌细胞增殖,显著抑制大鼠颈动脉球囊损伤后新内膜形成 [24] 。同样,在同一实验模型中,sGC刺激剂BAY 41-2272通过对血管平滑肌细胞的抗增殖和抗迁移作用降低了新生内膜对损伤的反应。综上所述,sGC刺激剂可有效改善血管损伤及氧化应激作用。

4. 非心血管作用(如图2)

1) 改善代谢

肥胖、动脉粥样硬化性血脂异常、高血压、胰岛素抵抗、葡萄糖耐受不良和炎症是代谢综合征的组成部分 [25] 。肥胖可能通过几种假设机制导致HF-PEF,包括脂肪组织炎症,肥胖的内分泌效应,或增加装载条件。在热中性的DIO小鼠中,证明了可溶性鸟苷酸环化酶广泛的代谢益处,如增加葡萄糖利用,改善甘油三酯清除,增加胰岛素敏感性,并降低血浆甘油三酯 [26] 。在普拉西呱治疗的小鼠中观察到的积极代谢作用与肝脏PI3K (pAKT-Thr308)信号传导的恢复有关 [26] 。

2) 改善肾脏血流量

sGC刺激剂已被证明对肾组织重塑和器官功能有益 [27] 。在动物试验中 [28] ,riociguat降低了心脏靶器官损伤,降低了血浆肌酐和尿素,减少了肾小球硬化和肾间质纤维化。新型sGC刺激剂在两个独立的高血压模型中显示出对心脏和肾脏靶器官损伤的有效保护作用 [15] 。并且是sGC在慢性肾衰(CKD)模型中起作用,几乎独立于CKD的根本原因,其机制可能由于恢复了被破坏的cGMP信号传导,在血管和非血管组织中都具有重要的生理作用,因此其有益作用可能延伸到恢复内皮介导的心肌和肾功能调节 [27] 。同时维利西呱不会增加电解质失衡或肾损害的风险 [29] ,这是维利西呱的主要优势之一。

3) 抗炎

新的研究表明HF-PEF中由共病引起的全身促炎状态确定为心肌结构和功能改变的原因,重点从左室后负荷过度转移到冠状动脉微血管炎症。这一转变得到了同心性左室肥厚良好的拉普拉斯关系以及所有显示类似重构和功能障碍的心室的支持 [30] 。在多种疾病模型中,sGC的抗炎作用已被充分证明,包括Dahl盐敏感大鼠模型中Ccl2、Tnfα、Nfκb和Icam1的肾表达减弱 [31] 。在目前的研究中,在多种胰岛素敏感组织(肝脏、骨骼肌和eWAT)中观察到sGC的抗炎作用。这些数据进一步证明了sGC具有广泛的抗炎活性,维利西呱通过刺激sGC激活下级通路实现抗炎作用。

Figure 2. The role of vericiguat in patients with heart failure

图2. 维利西呱在心力衰竭患者中的作用

5. 结论

最近的临床试验表明,维利西呱在高危心衰患者中是有益和安全的,特别是心血管原因死亡或心衰住院的发生率较低。同时欧洲、中国和日本的健康受试者对10.0 mg维利西呱的耐受性普遍良好 [32] 。单个心衰患者可考虑添加维利西呱,并可降低左室射血分数减低型心衰(HFrEF)患者的住院风险。但维利西呱对心血管死亡率的影响仍不确定,在低风险人群中进行更长时间随访的试验可能会更好地评估其对心血管死亡率的影响。根据急性和慢性心力衰竭治疗的最新进展,维利西呱治疗的未来定位需要更好地明确,未来的研究应该阐明维利西呱是否能改善患者的预后,特别是与沙库巴曲缬沙坦、SGLT2抑制剂联合使用。心力衰竭对这些新疗法的反应可能是附加的,甚至是协同的,这可能会改变心衰疾病的进程。

NOTES

*通讯作者。

参考文献

[1] Heidenreich, P.A., et al. (2022) Correction to: 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation, 145, e1033.
https://doi.org/10.1161/CIR.0000000000001073
[2] Markham, A. and Duggan, S. (2021) Vericiguat: First Approval. Drugs, 81, 721-726.
https://doi.org/10.1007/s40265-021-01496-z
[3] Armstrong, P.W., et al. (2020) Vericiguat in Patients with Heart Failure and Reduced Ejection Fraction. The New England Journal of Medicine, 382, 1883-1893.
https://doi.org/10.1056/NEJMoa1915928
[4] Lombardi, C.M., et al. (2021) Vericiguat for Heart Failure with Re-duced Ejection Fraction. Current Cardiology Reports, 23, Article No. 144.
https://doi.org/10.1007/s11886-021-01580-6
[5] Armstrong, P.W., et al. (2020) Effect of Vericiguat vs Placebo on Quality of Life in Patients with Heart Failure and Preserved Ejection Fraction: The VITALITY-HFpEF Randomized Clinical Trial. JAMA, 324, 1512-1521.
https://doi.org/10.1001/jama.2020.15922
[6] Diana Bonderman, et al. (2013) Riociguat for Patients with Pulmo-nary Hypertension Caused by Systolic Left Ventricular Dysfunction: A Phase IIb Double-Blind, Randomized, Place-bo-Controlled, Dose-Ranging Hemodynamic Study. Circulation, 128, 502-511.
https://doi.org/10.1161/CIRCULATIONAHA.113.001458
[7] Gheorghiade, M., et al. (2015) Effect of Vericiguat, a Soluble Guanylate Cyclase Stimulator, on Natriuretic Peptide Levels in Patients with Worsening Chronic Heart Failure and Reduced Ejection Fraction: The SOCRATES-REDUCED Randomized Trial. JAMA, 314, 2251-2262.
https://jamanetwork.com/journals/jama/article-abstract/2469195
[8] Pieske, B., et al. (2017) Vericiguat in Patients with Worsening Chronic Heart Failure and Preserved Ejection Fraction: Results of the Soluble Guanylate Cyclase Stimu-lator in Heart Failure Patients with PRESERVED EF (SOCRATES- PRESERVED) Study. European Heart Journal, 38, 1119-1127.
https://doi.org/10.1093/eurheartj/ehw593
[9] Gheorghiade, M., et al. (2013) Soluble Guanylate Cyclase: A Potential Therapeutic Target for Heart Failure. Heart Failure Reviews, 18, 123-134.
https://doi.org/10.1007/s10741-012-9323-1
[10] Follmann, M., et al. (2017) Discovery of the Soluble Guanylate Cyclase Stimulator Vericiguat (BAY 1021189) for the Treatment of Chronic Heart Failure. Journal of Medicinal Chem-istry, 60, 12, 5146-5161.
https://doi.org/10.1021/acs.jmedchem.7b00449
[11] Buys, E.S., et al. (2008) Gender-Specific Hypertension and Responsiveness to Nitric Oxide in sGCa1 Knockout Mice. Cardiovascular Research, 79, 179-186.
[12] Ky, B., et al. (2013) Ventricular-Arterial Coupling, Remodeling, and Prognosis in Chronic Heart Failure. Journal of the American College of Cardiology, 62, 1165-1172.
https://doi.org/10.1016/j.jacc.2013.03.085
[13] Schmidt, H.H.H.W., Schmidt, P.M. and Stasch, J.P. (2009) NO- and Haem-Independent Soluble Guanylate Cyclase Activators. In: Schmidt, H.H.H.W., Hofmann, F. and Stasch, J.P., Eds., cGMP: Generators, Effectors and Therapeutic Implications, Springer, Berlin, 309-339.
https://doi.org/10.1007/978-3-540-68964-5_14
[14] Evgenov, O.V., Pacher, P., Schmidt, P.M., Haskó, G. and Stasch, J.P. (2008) NO-Independent Stimulators and Activators of Soluble Guanylate Cyclase: Discovery and Therapeutic Potential. Nature Reviews Drug Discovery, 5, 755-768.
[15] Sharkovska, Y., et al. (2010) Nitric Ox-ide-Independent Stimulation of Soluble Guanylate Cyclase Reduces Organ Damage in Experimental Low-Renin and High-Renin Models. Journal of Hypertension, 28, 1666-1675.
https://doi.org/10.1097/HJH.0b013e32833b558c
[16] Shaikh, T.G., et al. (2023) Efficacy and Safety of Vericiguat for Treatment of Heart Failure: A Systematic Review. Current Problems in Cardiology, 48, Article ID: 101586.
https://doi.org/10.1016/j.cpcardiol.2023.101586
[17] Tan, Y.T., et al. (2009) The Pathophysiology of Heart Failure with Normal Ejection Fraction: Exercise Echocardiography Reveals Complex Abnormalities of Both Systolic and Dias-tolic Ventricular Function Involving Torsion, Untwist, and Longitudinal Motion. Journal of the American College of Cardiology, 54, 36-46.
[18] Lou, Q., et al. (2023) Vericiguat Reduces Electrical and Structural Remodeling in a Rabbit Model of Atrial Fibrillation. Journal of Cardiovascular Pharmacology and Therapeutics, 28, 9.
https://doi.org/10.1177/10742484231185252
[19] Lam, C.S.P., et al. (2009) Pulmonary Hypertension in Heart Failure with Preserved Ejection Fraction: A Community-Based Study. Journal of the American College of Cardiology, 53, 1119-1126.
https://doi.org/10.1016/j.jacc.2008.11.051
[20] Leung, C.C., Moondra, V., Catherwood, E. and Andrus, B.W. (2010) Prevalence and Risk Factors of Pulmonary Hypertension in Patients with Elevated Pulmonary Venous Pressure and Preserved Ejection Fraction. American Journal of Cardiology, 106, 284-286.
https://www.ajconline.org/article/S0002-9149(10)00703-4/fulltext
[21] Ghofrani, H.A., et al. (2013) Riociguat for the Treatment of Pulmonary Arterial Hypertension. The New England Journal of Medicine, 369, 330-340.
https://doi.org/10.1056/NEJMoa1209655
[22] Hossein-Ardeschir Ghofran, et al. (2013) Riociguat for the Treat-ment of Chronic Thromboembolic Pulmonary Hypertension. The New England Journal of Medicine, 369, 319-329.
https://www.nejm.org/doi/10.1056/NEJMoa1209657
[23] Rotariu, D., et al. (2022) Oxidative Stress—Complex Pathological Issues Concerning the Hallmark of Cardiovascular and Metabolic Disorders. Biomedicine & Pharma-cotherapy, 152, Article ID: 113238.
https://doi.org/10.1016/j.biopha.2022.113238
[24] Liu, Y.N., et al. (2006) YC-1 [3-(5’-Hydroxymethyl-2’-Furyl)-1-Benzyl Indazole] Inhibits Neointima Formation in Balloon-Injured Rat Carotid through Suppression of Expressions and Activities of Matrix Metalloproteinases 2 and 9. Journal of Pharmacology and Experimental Therapeutics, 316, 35-41.
https://doi.org/10.1124/jpet.105.090563
[25] Grundy, S.M., et al. (2004) Definition of Metabolic Syndrome. Circulation, 109, 433-438.
https://www.ahajournals.org/doi/10.1161/01.CIR.0000111245.75752.C6?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed
[26] Schwartzkopf, C.D., et al. (2022) Beneficial Metabolic Effects of Praliciguat, a Soluble Guanylate Cyclase Stimulator, in a Mouse Diet-Induced Obesity Model. Frontiers in Pharmacolo-gy, 13, Article ID: 852080.
https://doi.org/10.3389/fphar.2022.852080
[27] Stasch, J.P., Schlossmann, J. and Hocher, B. (2015) Renal Effects of Soluble Guanylate Cyclase Stimulators and Activators: A Review of the Preclinical Evidence. Current Opinion in Pharmacology, 21, 95-104.
https://doi.org/10.1016/j.coph.2014.12.014
[28] Ott, I.M., et al. (2012) Effects of Stimulation of Soluble Guanylate Cyclase on Diabetic Nephropathy in Diabetic eNOS Knockout Mice on Top of Angiotensin II Receptor Blockade. PLOS ONE, 7, e42623.
https://doi.org/10.1371/journal.pone.0042623
[29] Xia, J., et al. (2022) Development of Vericiguat: The First Solu-ble Guanylate Cyclase (sGC) Stimulator Launched for Heart Failure with Reduced Ejection Fraction (HFrEF). Biomedi-cine & Pharmacotherapy, 149, Article ID: 112894.
https://doi.org/10.1016/j.biopha.2022.112894
[30] Paulus, W.J. and Tschöpe, C. (2013) A Novel Paradigm for Heart Failure with Preserved Ejection Fraction. Journal of the American College of Cardiology, 62, 263-271.
https://doi.org/10.1016/j.jacc.2013.02.092
[31] Tobin, J.V., et al. (2018) Pharmacological Characterization of IW-1973, a Novel Soluble Guanylate Cyclase Stimulator with Extensive Tissue Distribution, Antihypertensive, An-ti-Inflammatory, and Antifibrotic Effects in Preclinical Models of Disease. Journal of Pharmacology and Experimental Therapeutics, 365, 664-675.
https://doi.org/10.1124/jpet.117.247429
[32] Boettcher, M., et al. (2021) Safety, Pharmacodynamic, and Pharma-cokinetic Characterization of Vericiguat: Results from Six Phase I Studies in Healthy Subjects. European Journal of Clinical Pharmacology, 77, 527-537.
https://doi.org/10.1007/s00228-020-03023-7