创伤患者的外周血相关因子及相关细胞的研究进展
Advances in the Study of Peripheral Blood-Related Factors and Associated Cells in Trauma Patients
DOI: 10.12677/ACM.2023.1361298, PDF, HTML, XML, 下载: 274  浏览: 355 
作者: 卡米江·亚森:新疆医科大学研究生学院,新疆 乌鲁木齐;朱功兵*:新疆医科大学第一附属医院急救创伤中心,新疆 乌鲁木齐
关键词: 创伤外周血相关因子Trauma Peripheral Blood Associated Factors
摘要: 当今在创伤患者的研究有了诸多突破性发展。创伤患者伤后外周血相关指标变化极其复杂,且有较重要的临床意义,目前研究内容涉及创伤患者中的相关性诸多危险信号分子的研究,雌激素水平在创伤患者中的研究,血清CD5L以及相关内因子黏附分子在创伤患者中的研究。创伤患者骨髓间质干细胞以及红细胞分布宽度等相关研究等,现我们综合叙述其各项相关研究的进展。
Abstract: Today, there are many breakthroughs in the study of trauma patients. The changes of peripheral blood indicators in trauma patients are complex and clinically important, and the current re-search involves the study of many risk signaling molecules in trauma patients, the study of estrogen levels in trauma patients, the study of serum CD5L and related internal factor adhesion molecules in trauma patients. We now describe the progress of these studies, including studies on bone marrow mesenchymal stem cells and red blood cell distribution width in trauma patients.
文章引用:卡米江·亚森, 朱功兵. 创伤患者的外周血相关因子及相关细胞的研究进展[J]. 临床医学进展, 2023, 13(6): 9265-9272. https://doi.org/10.12677/ACM.2023.1361298

1. 引言

由于工作和商业的迅猛增长,受到的损伤已经变得越来越严重 [1] ,尤其对于中老年人来说,其威胁更加突出。因此,创伤也成为医疗活动中需解决的重要难题。近年来,由于全球经济的飞速发展,汽车数量的激增,以及“现代文明疾病”的出现,使得交通事故的频次急剧上升,而损伤性休克则是其中最突出的疾病,其发病变异快、伤情复杂性、病死率极高,极大影响到人们的健康和社会进步 [2] 。早期的准确处理尤为关键,除了严重损伤本身(通常导致当场或仅几小时内的立即或早期死亡)之外。随着时间的推移,许多受到严重的外科手术的病人因为炎症引起的损害而不幸去世,而这种损害会破坏机体的免疫平衡,从而引起一系列的疾病,如脓毒症、脓毒性休克和多器官功能紊乱(MODS) [3] [4] [5] [6] 。

1.1. 创伤中的相关危险信号

HMGB1在湿地学研究方面表现出色,在受到严重伤害后,血液30分钟内会出现明显上升 [7] 。另外,HMGB1水平还会受到伤害严重性、组织缺血、早期凝血障碍、纤溶亢进、补体激活和整个机体炎性反应等因素影响 [7] 。创伤后早期系统性HMGB1增加表明患者在创伤后期出现了器官损伤,如急性肺损伤或急性肾功能衰竭 [7] 。不仅HMGB1显示了器官并发症,而且与幸存者相比,外伤非幸存者的HMGB1水平也增加了 [7] 。细胞因子是小的信使分子,在创伤时也会产生、活化和释放 [8] 。IL-1家族成员IL-1α和IL-1β是由Charles A. Dinarello于1974年发现的第一批细胞因子 [9] 。然而关于IL-1α在创伤方面的研究很少。值得关注的是,对创伤患者的临床研究很少,因为大多数研究都集中在更显著的IL-1β的作用上。有研究对56名创伤患者的41种免疫调节蛋白的血浆水平进行了跟踪研究,从创伤后开始进行为期1年的随访 [10] 。随着时间的推移,31种蛋白质发生了显著变化 [10] 。研究者观察到混合早期反应,其中IL-6、IL-10、IL-1Ra、巨噬细胞移动抑制因子(MIF)、髓过氧化物酶(MPO)、单核细胞趋化蛋白-1 (MCP-1)、MMP-9和sFasL水平升高,但同时fractalkine、表皮生长因子(EGF)、IL-7、IL-9、IL-17、肿瘤坏死因子-β (TNFβ)、MIP-1α和巨噬细胞衍生趋化因子(MDC)水平降低,尤其是IL-1α [10] 。通过DNA微阵列对钝性胸部创伤后肺组织炎症进行的体内数据分析已经证实了创伤反应中高度复杂转录程序的激活 [11] 。然而,关于IL-1α,作者提出了升高的表达水平,这伴随着其他炎症和凝血蛋白水平的升高,包括TNFα受体、IL-1β、C3、NF-κB和纤溶酶原激活剂 [11] 。IL-1水平的升高被描述为与成人呼吸窘迫综合征(ARDS)的病原体发生、随后的特发性肺纤维化、结节病以及某些炎性疾病有关 [12] 。在体外,急性呼吸窘迫综合征患者肺泡巨噬细胞(AM)释放的总IL-1和IL-1β明显高于对照组 [12] 。有研究表明严重创伤导致热休克蛋白表达增强在急性损伤后阶段的多形核白细胞中 [13] 。与健康志愿者相比,发现创伤患者的多形核白细胞中HSP27、HSP70和HSP90的表达增加,表明HSP表达的增加可能调节PMNL功能 [13] 。烧伤患者也有类似的发现,多形核白细胞中HSP27、HSP60和HSP70的表达明显高于健康志愿者的多形核白细胞 [14] 。与这些变化相伴随的是多形核白细胞氧化活性的增加,并显著抑制了热损伤后的细胞凋亡 [14] 。创伤后30分钟内血清HSP60水平与创伤后急性肺损伤的发展相关 [15] 。在体外,HSP60引起巨噬细胞释放NO [15] 。最近的研究表明,组蛋白主要结合并激活各种细胞上的TLR,如TLR2、TLR4或TLR9,类似于其他的炎症反应 [16] 。因此,循环组蛋白在创伤患者经常发生的多器官衰竭中的作用已经得到阐述。C57BL/6小鼠接受不同剂量的组蛋白,并对包括肺、肝和肾在内的各种器官的形态和功能变化进行时序评估 [17] 。组蛋白给药导致多器官损伤剂量依赖性加重后死亡 [17] 。肺部和肝脏损伤在15分钟内就已经很明显,而肾脏损伤发生在后期 [17] 。

1.2. 雌激素及相关受体

临床研究表明,女性创伤后肺炎、败血症和多器官衰竭的发病率低于男性 [18] 。在有一项研究中 [19] 的一项涉及多发性创伤患者的研究中,女性显示出较低的IL-6和IL-8水平,这与较少的多器官功能障碍综合征和脓毒症有关。在绝经期间,黄体生成素和卵泡刺激素水平增加到远远高于绝经前水平;雌二醇和雌酮水平下降;在较小的程度上,随着年龄的增长,雄烯二酮和睾酮水平下降,表现为肾上腺素暂停 [20] 。研究表明,E2与ICI 182,780 (一种选择性雌激素受体(ER)拮抗剂)合用,消除了E2对T-H后心脏功能的有益作用 [21] 。此外,孕酮介导的心脏保护作用与左心室孕酮受体活性增加和T-H后循环血量增加相关 [22] 。给予雄激素受体拮抗剂氟他胺后,T-H后的心脏和肝脏功能恢复,肠道中性粒细胞浸润减少 [23] 。T-H后给予氟他胺也通过上调将睾酮转化为E2的芳香化酶活性增加了心脏E2水平和ER表达 [23] 。还报道了E2以ER依赖的方式在人内皮细胞 [24] 研究还表明,DPN改善了心脏功能,增加了T-H后心脏中热休克蛋白(HSPs) 32、60、70和90以及热休克因子1 (HSF-1) DNA结合活性 [25] 。有报道,17β-雌二醇甚至在ER-α被破坏的小鼠中也能提供对血管损伤的保护 [26] 。此外,在雄性大鼠的血管损伤后,ER-β的表达受到刺激,而不是ER-α的表达 [27] 。此外,使用ER-α或ER-β敲除小鼠的研究表明,ER-β在I/R后的心脏保护中起作用 [28] 卵巢切除降低了女性心脏中HSP70的水平,这可以通过E2给药来预防 [29] 。其他研究表明,10小时的E2治疗使雄性大鼠成年心肌细胞中的HSP70水平加倍 [30] 。与这些发现一致的是,其他研究观察到给予E2的T-H后心脏HSP32过度表达 [31] 。HSP合成的上调被认为是保护重要的细胞稳态机制对抗有害的外部因素的强大的生理学、内源性途径。从心肌缺血到基因突变的生理应激产生一种疾病状态,其中蛋白质损伤和错误折叠的蛋白质结构是一个共同的特征 [32] 。据报道,磷脂酰肌醇3-激酶/Akt在细胞存活途径中发挥重要作用 [33] 。根据最新的研究,PI3K/Akt信号可以被用于多种方式来抵御细胞的衰老,比如,Akt的磷酸化可以激发Bcl-2的死亡反应,使得BAD的转移被阻止,最终被阻止在细胞内的Bcl-2的表达 [33] 。几项研究检测了E2和性别对心脏HSP表达的影响 [30] 。这些研究表明,雌性大鼠心脏的HSP70是雄性心脏的两倍。卵巢切除降低了女性心脏中HSP70的水平,这可以通过E2给药来预防。其他研究表明,10小时的E2治疗使雄性大鼠成年心肌细胞中的HSP70水平加倍 [33] 。与这些发现一致的是,其他研究观察到给予E2的T-H后心脏HSP32过度表达 [33] 。

2. 创伤患者的血清CD5L

有研究表明,创伤患者伤后24小时内血清CD5L水平升高,尤其是创伤相关性肺损伤及急性呼吸窘迫综合征(ARDS)患者。先前的研究表明,诊断为ARDS的创伤患者有更高的总体损伤严重程度评分 [34] [35] 。大多数研究也证实创伤严重程度是创伤相关ARDS的危险因素。另有研究还发现ISS评分是创伤相关PLI/ARDS的独立危险因素。创伤后24小时内出现ARDS的患者总体创伤严重程度较高 [34] [35] 。该研究表明,在创伤患者中,重度创伤和轻度创伤在肺损伤、ARDS、机械通气、是否进行气管插管以及其他相关呼吸并发症方面存在显著差异。在ALI小鼠模型血清游离形式的CD5L增加,肺组织CD5L基因表达增加。类似研究中与健康志愿者相比,创伤患者血清CD5L水平升高。尽管CD5L可能是一种可用于诊断PLI/ARDS的重要指示,但它的特异性及灵敏程度仍然较低,因而无法成为该疾病的首选治疗手段 [36] 。这项研究是单中心研究。外伤患者病情严重,所以存在一定程度的偏差。过去几十年来,ARDS的死亡率一直未能得到有效的降低,因此本次研究旨在探索ARDS的发病机制及其可能的治疗靶点,以期望获得更多的有效结果。然而,由于本次研究的病例数量较少,无法对死于创伤相关PLI/ARDS的患者进行深入的研究。为了更好地理解CD5L对于创伤相关PLI/ARDS患者的影响,我们需要通过动物和临床研究来探究它的潜在作用 [37] [38] 。

创伤患者中内因子与黏附分子

严重创伤的结果显然与SIRS和CARS进展为MODS有关。这一过程依赖于细胞因子和介质的复杂网络,包括促炎(Th1)和抗炎(Th2)细胞因子和粘附分子。尽管有一些相互矛盾的结果,但有一个共识,即导致进行性器官衰竭的内皮损伤的生理病理过程不仅与最初的损伤密切相关,还与这些全身炎症反应介质的产生和释放的水平和时间密切相关 [39] 。创伤的严重程度评估通常基于解剖评分,即ISS [40] ,结合或不结合生理变量和年龄。然而,解剖损伤似乎与更明显的系统性炎症和内皮炎相关,正如我们的研究和其他研究中入院时IL-6水平与ISS之间的相关性所示 [41] 。最后,全身炎症是器官功能障碍和更糟糕结果的驱动因素。单核细胞人类白细胞抗原-DR表达缺乏恢复已被证明与创伤后脓毒症的发展有关 [42] 。因此,严重创伤早期炎症反应的评估应包括在早期结果分层的研究中,以便做出更可靠的关于ICU入院的决定,并识别易发生院内感染的创伤患者人群。在不久的将来,调节Th细胞亚群优势可能成为治疗严重创伤的一种新的治疗选择。

3. 骨髓间质干细胞

在DNA水平上,髓样分化相关转录因子核因子I (NFI)控制脓毒症时的MDSC扩张和免疫抑制 [43] 。和NFI蛋白已被证明影响由许多信号转导途径调节的基因的表达,包括那些被控制的TGF-β、类固醇激素、肿瘤坏死因子α等 [44] 。在外周组织创伤模型中,用抗高迁移率族蛋白B1 (hm bb1)抗体治疗改善了创伤诱导的衰减T细胞反应和骨髓间充质干细胞的积累 [45] 。MDSCs不仅干扰T细胞的活化和扩增,而且调节诱导的T细胞应答的类型。在骨髓和实体器官移植、流感感染或败血症的实验模型中,在食道癌、胰腺癌或胃癌患者中和在健康孕妇的胎盘中,MDSCs的出现与Th2细胞的诱导有关 [46] 。几份报告表明,组织创伤、手术压力或败血症 [47] ;可能使平衡向Th2免疫应答转移,Th2免疫应答是病原体防御受损和感染易感性增加的原因。令人惊讶的是,我们观察到在TxT过程中体内Gr-1细胞的减少并没有改变产生Th2的T细胞的数量和它们产生Th2特异性细胞因子的能力。相反,在缺乏Gr-1细胞的情况下,产生Th1的T细胞和细胞因子显著减少,表明在TxT模型中诱导Gr-1高细胞有利于Th1反应。有趣的是,对于代表另一种肺部炎症的鼠哮喘模型,mdsc的存在与Th1细胞的优势相关,因为在哮喘环境中LPS对mdsc的体内诱导或肿瘤衍生的mdsc的转移抑制了Th2效应子功能 [48] 。胃肠道多刺线虫感染后诱导MDSCs与抑制有效消除线虫所需的Th2反应相关 [49] 。这些数据强烈表明,靶器官的类型和炎症状态可能影响发育中的MDSCs的亚型和抑制能力,以及随后启动的T细胞反应的种类。虽然T细胞反应被骨髓间充质干细胞强烈调节,但CD11b Gr-1细胞的缺乏并不影响早期局部促炎反应,并轻微增加早期全身反应。

创伤患者与红细胞宽度分布的关系

红细胞分布宽度(RDW)可用于衡量循环红细胞的尺寸 [50] ,它可以通过一种简单的公式来表示,即通过把一个红细胞的尺寸与它的总体积相减,再加上一个100,就可得到一个相应的rdw。rdw可作为一种衡量循环红细胞尺寸的指标,用于评估红细胞的生长情况。RDW的正常范围是11.0%~15.0% [50] 。传统上,RDW有助于区分贫血的类型;然而最近,RDW被用于预测多种临床表现的死亡率,包括坏死性筋膜炎、胰腺炎和败血症 [51] 。RDW在预测创伤患者死亡率中的作用已有研究,但仍不清楚。在关于该主题的首批研究之一中,Majercik等人 [52] 评估了创伤患者入院RDW与30天和1年死亡率之间的关系。根据入院RDW将患者分为五分位数后,上五分位数(即最高RDW)的死亡率最高。这些发现得到了Kong等人 [53] 的进一步支持,他们发现受伤后1天和2天的RDW值可以预测28天的死亡率。然而,RDW和创伤死亡率之间的关系并不是平衡的。Paulus et al. [54] 评估了入院RDW和大量输血需求之间的关系。尽管入院RDW独立预测大量输血,但在多变量分析中,入院RDW和死亡率之间没有关联。RDW与创伤患者败血症之间的联系与RDW与炎症和感染之间的联系一致 [55] 。事实上,与非感染性诊断相比,RDW可能更能预测感染性或炎性诊断患者的预后 [55] 。需要进一步研究,以了解与创伤相关的炎症、损伤后感染性并发症的存在之间的关系,以及这两种事件如何与RDW相互作用。鉴于RDW和脓毒症的发展之间的密切关系,进一步的研究应集中于利用RDW作为创伤患者脓毒症发展、持续和可能解决的标志 [56] 。

4. 结语与展望

综上所述,创伤作为临床中常见的危急症,在创伤中起作用相关生物学标志,对患者的病情评估以及预后有重要的参考价值与意义,有待我们进一步去研究各类创伤病人的相关生物学生理学变化,对未来临床研究工作具有极大意义。

NOTES

*通讯作者。

参考文献

[1] 成军. 现代细胞凋亡分子生物学[M]. 北京: 科学出版社, 2012.
[2] 卢加发, 杨顺露, 徐耀伟, 魏博. 嘉定区1402例交通事故伤院前急救调查分析[J]. 临床急诊杂志, 2013, 4(14): 168-170.
[3] Wutzler, S., Lustenberger, T., Relja, B., Lehnert, M. and Marzi, I. (2013) Pathophysiology of Multiple Trauma: Intensive Care Medicine and Timing of Treatment. Der Chirurg, 84, 753-758.
https://doi.org/10.1007/s00104-013-2477-0
[4] Wafaisade, A., et al. (2011) Epidemiology and Risk Factors of Sepsis after Multiple Trauma: An Analysis of 29,829 Patients from the Trauma Regis-try of the German Society for Trauma Surgery. Critical Care Medicine, 39, 621-628.
https://doi.org/10.1097/CCM.0b013e318206d3df
[5] Osuka, A., Ogura, H., Ueyama, M., Shimazu, T. and Le-derer, J.A. (2014) Immune Response to Traumatic Injury: Harmony and Discordance of Immune System Homeostasis. Acute Medicine & Surgery, 1, 63-69.
https://doi.org/10.1002/ams2.17
[6] Rose, S. and Marzi, I. (1998) Mediators in Polytrauma—Pathophysiological Significance and Clinical Relevance. Langenbeck’s Archives of Surgery, 383, 199-208.
https://doi.org/10.1007/s004230050119
[7] Bellussi, L.M., et al. (2013) Are HMGB1 Protein Expression and Secretion Markers of Upper Airways Inflammatory Diseases? Journal of Biological Regulators and Homeostatic Agents, 27, 791-804.
[8] Van Griensven, M. (2014) Cytokines as Biomarkers in Polytraumatized Patients. Der Unfallchirurg, 117, 699-702.
https://doi.org/10.1007/s00113-013-2543-6
[9] Dinarello, C.A., Goldin, N.P. and Wolff, S.M. (1974) Demon-stration and Characterization of Two Distinct Human Leukocytic Pyrogens. Journal of Experimental Medicine, 139, 1369-1381.
https://doi.org/10.1084/jem.139.6.1369
[10] Jackman, R.P., et al. (2012) Distinct Roles of Trauma and Transfusion in Induction of Immune Modulation after Injury. Transfusion, 52, 2533-2550.
https://doi.org/10.1111/j.1537-2995.2012.03618.x
[11] Ehrnthaller, C., et al. (2015) The Molecular Fingerprint of Lung Inflammation after Blunt Chest Trauma. European Journal of Medical Research, 20, Article No. 70.
https://doi.org/10.1186/s40001-015-0164-y
[12] Jacobs, R.F., Tabor, D.R., Burks, A.W. and Campbell, G.D. (1989) Elevated lnterleukin-1 Release by Human Alveolar Macrophages during the Adult Respiratory Distress Syndrome. American Review of Respiratory Disease, 140, 1686-1692.
https://doi.org/10.1164/ajrccm/140.6.1686
[13] Hashiguchi, N, et al. (2001) Enhanced Expression of Heat Shock Proteins in Leukocytes from Trauma Patients. The Journal of Trauma: Injury, Infection, and Critical Care, 50, 102-107.
https://doi.org/10.1097/00005373-200101000-00018
[14] Ogura, H., et al. (2002) Long-Term Enhanced Expres-sion of Heat Shock Proteins and Decelerated Apoptosis in Polymorphonuclear Leukocytes from Major Burn Patients. The Journal of Burn Care & Rehabilitation, 23, 103-109.
https://doi.org/10.1097/00004630-200203000-00006
[15] Pespeni, M., et al. (2005) Serum Levels of HSP60 Cor-relate with the Development of Acute Lung Injury after Trauma. Journal of Surgical Research, 126, 41-47.
https://doi.org/10.1016/j.jss.2005.01.012
[16] Semeraro, F., et al. (2011) Extracellular Histones Promote Thrombin Generation through Platelet-Dependent Mechanisms: Involvement of Platelet TLR2 and TLR4. Blood, 118, 1952-1961.
https://doi.org/10.1182/blood-2011-03-343061
[17] Kawai, C., et al. (2016) Circulating Extracellular Histones Are Clinically Relevant Mediators of Multiple Organ Injury. The American Journal of Pathology, 186, 829-843.
https://doi.org/10.1016/j.ajpath.2015.11.025
[18] Mostafa, G., Huynh, T., Sing, R.F., Miles, W.S., Norton, H.J. and Thomason, M.H. (2002) Gender-Related Outcomes in Trauma. The Journal of Trauma: Injury, Infection, and Criti-cal Care, 53, 430-434.
https://doi.org/10.1097/00005373-200209000-00006
[19] Frink, M., Pape, H.-C., van Griensven, M., Krettek, C., Chaudry, I.H. and Hildebrand, F. (2007) Influence of Sex and Age on MODS and Cytokines after Multiple Injuries. Shock, 27, 151-156.
https://doi.org/10.1097/01.shk.0000239767.64786.de
[20] Lobo, R. (2000) Menopause. In: Goldman, L. and Ben-nett, J., Eds., Cecil Textbook of Medicine, W.B. Sanders Company, Philadelphia, 1360-1366.
[21] Jarrar, .D, Wang, P., Knoferl, M.W., Kuebler, J.F., Cioffi, W.G., Bland, K.I. and Chaudry, I.H. (2000) Insight into the Mechanism by Which Estradiol Improves Organ Functions after Trauma-Hemorrhage. Surgery, 128, 246-252.
https://doi.org/10.1067/msy.2000.107376
[22] Kuebler, J.F., Jarrar, D., Bland, K.I., Rue III, L., Wang, P. and Chaudry, I.H. (2003) Progesterone Administration after Trauma and Hemorrhagic Shock Improves Cardiovascular Re-sponses. Critical Care Medicine, 31, 1786-1793.
https://doi.org/10.1097/01.CCM.0000063441.41446.23
[23] Hsieh, Y.-C., et al. (2006) Flutamide Restores Cardi-ac Function after Trauma-Hemorrhage via an Estrogen-Dependent Pathway through Upregulation of PGC-1. American Journal of Physiology-Heart and Circulatory Physiology, 290, H416-H423.
https://doi.org/10.1152/ajpheart.00865.2005
[24] Caulin-Glaser, T., García-Cardeña, G., Sarrel, P., Sessa, W.C. and Bender, J.R. (1997) 17β-Estradiol Regulation of Human Endothelial Cell Basal Nitric Oxide Release, Independent of Cytosolic Ca2+ Mobilization. Circulation Research, 81, 885-892.
https://doi.org/10.1161/01.RES.81.5.885
[25] Yu, H.-P., Shimizu, T., Choudhry, M.A., Hsieh, Y.C., Suzuki, T., Bland, K.I. and Chaudry, I.H. (2006) Mechanism of Car-dioprotection Following Trauma-Hemorrhagic Shock by a Selective Estrogen Receptor-β Agonist: Up-Regulation of Cardiac Heat Shock Factor-1 and Heat Shock Proteins. Journal of Molecular and Cellular Cardiology, 40, 185-194.
https://doi.org/10.1016/j.yjmcc.2005.10.001
[26] Iafrati, M.D., Karas, R.H., Aronovitz, M., Kim, S., Sullivan Jr., T.R., Lubahn, D.B., O’Donnell Jr., T.F., Korach, K.S. and Mendelsohn, M.E. (1997) Estrogen Inhibits the Vascular In-jury Response in Estrogen Receptor α-Deficient Mice. Nature Medicine, 3, 545-548.
https://doi.org/10.1038/nm0597-545
[27] Lindner, V., Kim, S.K., Karas, R.H., Kuiper, G.G., Gustafsson, J.A. and Mendelsohn, M.E. (1998) Increased Expression of Estrogen Receptor-β mRNA in Male Blood Vessels after Vascular Injury. Circulation Research, 83, 224-229.
https://doi.org/10.1161/01.RES.83.2.224
[28] Gabel, S.A., Walker, V.R., London, R.E., Steenbergen, C., Korach, K.S. and Murphy, E. (2005) Estrogen Receptor Beta Mediates Gender Differences in Ischemia/Reperfusion Injury. Journal of Molecular and Cellular Cardiology, 38, 289-297.
https://doi.org/10.1016/j.yjmcc.2004.11.013
[29] Voss, M.R., Stallone, J.N., Li, M., Cornelussen, R.N., Knuefer-mann, P. and Knowlton, A.A. (2003) Gender Differences in the Expression of Heat Shock Proteins: The Effect of Estro-gen. American Journal of Physiology-Heart and Circulatory Physiology, 285, H687-H692.
https://doi.org/10.1152/ajpheart.01000.2002
[30] Knowlton, A.A. and Sun, L. (2001) Heat-Shock Factor-1, Steroid Hormones, and Regulation of Heat-Shock Protein Expression in the Heart. American Journal of Physiology-Heart and Circulatory Physiology, 280, H455-H464.
https://doi.org/10.1152/ajpheart.2001.280.1.H455
[31] Szalay, L., Shimizu, T., Schwacha, M.G., Choudhry, M.A., Rue III, L.W., Bland, K.I. and Chaudry, I.H. (2005) Mechanism of Salutary Effects of Estradiol on Organ Function after Trauma-Hemorrhage: Upregulation of Heme Oxygenase. American Journal of Physiology-Heart and Circulatory Physi-ology, 289, H92-H98.
https://doi.org/10.1152/ajpheart.01247.2004
[32] Kumarapeli, A.R.K. and Wang, X. (2004) Genetic Modification of the Heart: Chaperones and the Cytoskeleton. Journal of Molecular and Cellular Cardiology, 37, 1097-1109.
https://doi.org/10.1016/j.yjmcc.2004.07.004
[33] Rajesh, K.G., Suzuki, R., Maeda, H., Yamamoto, M., Yutong, X. and Sasaguri, S. (2005) Hydrophilic Bile Salt Ursodeoxycholic Acid Protects Myocardium against Reperfusion Injury in a PI3K/Akt Dependent Pathway. Journal of Molecular and Cellular Cardiology, 39, 766-776.
https://doi.org/10.1016/j.yjmcc.2005.07.014
[34] Barrett, C.D., Hsu, A.T., Ellson, C.D., et al. (2018) Blood Clot-ting and Traumatic Injury with Shock Mediates Complement-Dependent Neutrophil Priming for Extracellular ROS, ROS-Dependent Organ Injury and Coagulopathy. Clinical and Experimental Immunology, 194, 103-117.
https://doi.org/10.1111/cei.13166
[35] Eworuke, E., Major, J.M. and Gilbert, M.L. (2018) National Incidence Rates for Acute Respiratory Distress Syndrome (ARDS) and ARDS Cause-Specific Factors in the United States (2006-2014). Journal of Critical Care, 47, 192-197.
https://doi.org/10.1016/j.jcrc.2018.07.002
[36] Gao, X., Liu, Y., Xu, F., et al. (2019) Assessment of Apoptosis In-hibitor of Macrophage/CD5L as a Biomarker to Predict Mortality in the Critically Ill with Sepsis. Chest, 156, 696-705.
https://doi.org/10.1016/j.chest.2019.04.134
[37] Kornblith, L.Z., Robles, A.J., Conroy, A.S., et al. (2019) Predic-tors of Postinjury Acute Respiratory Distress Syndrome: Lung Injury Persists in the Era of Hemostatic Resuscitation. Journal of Trauma and Acute Care Surgery, 87, 371-378.
https://doi.org/10.1097/TA.0000000000002331
[38] Kimura, H., Suzuki, M., Konno, S., et al. (2017) Orchestrat-ing Role of Apoptosis Inhibitor of Macrophage in the Resolution of Acute Lung Injury. The Journal of Immunology, 199, 3870-3882.
https://doi.org/10.4049/jimmunol.1601798
[39] Giannoudis, P.V., Hildebrand, F. and Pape, H.C. (2004) Inflammatory Serum Markers in Patients with Multiple Trauma. Can They Predict Outcome? The Journal of Bone and Joint Surgery, 86, 313-323.
https://doi.org/10.1302/0301-620X.86B3.15035
[40] Chawda, M.N., Hildebrand, F., Pape, H.C. and Giannoudis, P.V. (2004) Predicting Outcome after Multiple Trauma: Which Scoring System? Injury, 35, 347-358.
https://doi.org/10.1016/S0020-1383(03)00140-2
[41] Gebhard, F., Pfetsch, H., Steinbach, G., Strecker, W., Kinzl, L. and Bruckner, U.B. (2000) Is Interleukin 6 an Early Marker of Injury Severity Following Major Trauma in Humans? Archives of Surgery, 135, 291-295.
https://doi.org/10.1001/archsurg.135.3.291
[42] Cheron, A., Floccard, B., Allaouchiche, B., et al. (2010) Lack of Recovery in Monocyte Human Leukocyte Antigen-DR Expression Is Independently Associated with the Development of Sepsis after Major Trauma. Critical Care, 14, Article No. R208.
https://doi.org/10.1186/cc9331
[43] McPeak, M.B., et al. (2017) Myeloid Cell-Specific Knockout of NFI-A Improves Sepsis Survival. Infection and Immunity, 85, e00066-17.
https://doi.org/10.1128/IAI.00066-17
[44] Gronostajski, R.M. (2000) Roles of the NFI/CTF Gene Family in Transcription and Development. Gene, 249, 31-45.
https://doi.org/10.1016/S0378-1119(00)00140-2
[45] Ruan, X., et al. (2015) Anti-HMGB1 Monoclonal Antibody Ameliorates Immunosuppression after Peripheral Tissue Trauma: Attenuated T-Lymphocyte Response and Increased Splenic CD11b+Gr-1+ Myeloid-Derived Suppressor Cells Require HMGB1. Mediators of Inflammation, 2015, Article ID: 458626.
https://doi.org/10.1155/2015/458626
[46] Liao, J., et al. (2014) Dexamethasone Potentiates Mye-loid-Derived Suppressor Cell Function in Prolonging Allograft Survival through Nitric Oxide. Journal of Leukocyte Bi-ology, 96, 675-684.
https://doi.org/10.1189/jlb.2HI1113-611RR
[47] Heidecke, C.-D., et al. (1999) Selective De-fects of T Lymphocyte Function in Patients with Lethal Intraabdominal Infection. The American Journal of Surgery, 178, 288-292.
https://doi.org/10.1016/S0002-9610(99)00183-X
[48] Song, C., et al. (2014) Passive Transfer of Tu-mour-Derived MDSCs Inhibits Asthma-Related Airway Inflammation. Scandinavian Journal of Immunology, 79, 98-104.
https://doi.org/10.1111/sji.12140
[49] Valanparambil, R.M., Tam, M., Jardim, A., Geary, T.G. and Ste-venson, M.M. (2017) Primary Heligmosomoides polygyrus bakeri Infection Induces Myeloid-Derived Suppressor Cells That Suppress CD4+Th2 Responses and Promote Chronic Infection. Mucosal Immunology, 10, 238-249.
https://doi.org/10.1038/mi.2016.36
[50] Salvagno, G.L., Sanchis-Gomar, F., Picanza, A. and Lippi, G. (2015) Red Blood Cell Distribution Width: A Simple Parameter with Multiple Clinical Applications. Critical Reviews in Clinical La-boratory Sciences, 52, 86-105.
https://doi.org/10.3109/10408363.2014.992064
[51] Lorente, L., Martín, M.M., Abreu-González, P., et al. (2014) Red Blood Cell Distribution Width during the First Week Is Associated with Severity and Mortality in Septic Patients. PLOS ONE, 9, e105436.
https://doi.org/10.1371/journal.pone.0105436
[52] Majercik, S., Fox, J., Knight, S. and Horne, B.D. (2013) Red Cell Distribution Width Is Predictive of Mortality in Trauma Patients. Journal of Trauma and Acute Care Surgery, 74, 1021-1026.
https://doi.org/10.1097/TA.0b013e3182826f02
[53] Kong, T., Park, J.E., Park, Y.S., et al. (2017) Usefulness of Serial Measurement of the Red Blood Cell Distribution Width to Predict 28-Day Mortality in Patients with Trauma. The American Journal of Emergency Medicine, 35, 1819-1827.
https://doi.org/10.1016/j.ajem.2017.06.008
[54] Paulus, E.M., Weinberg, J.A., Magnotti, L.J., et al. (2014) Admission Red Cell Distribution Width: A Novel Predictor of Mas-sive Transfusion after Injury. The American Surgeon™, 80, 685-689.
https://doi.org/10.1177/000313481408000724
[55] Fujita, B., Franz, M., Figulla, H.-R., et al. (2015) Red Cell Distribution Width and Survival in Patients Hospitalized on a Medical ICU. Clinical Biochemistry, 48, 1048-1052.
https://doi.org/10.1016/j.clinbiochem.2015.07.011
[56] Hu, Z.-D., Lippi, G. and Montagnana, M. (2020) Diagnos-tic and Prognostic Value of Red Blood Cell Distribution Width in Sepsis: A Narrative Review. Clinical Biochemistry, 77, 1-6.
https://doi.org/10.1016/j.clinbiochem.2020.01.001