非编码RNA与缺血性卒中出血转化后血脑屏障关系研究进展
Research Progress on the Relationship between Non-Coding RNA and Blood-Brain Barrier after Ischemic Stroke Hemorrhage Transformation
DOI: 10.12677/ACM.2022.1291168, PDF, HTML, XML, 下载: 373  浏览: 481  科研立项经费支持
作者: 韩荣荣, 张 朋:济宁医学院临床医学院,山东 济宁;李道静, 张爱梅*:济宁医学院附属医院神经内科,山东 济宁
关键词: 长链非编码RNA环状RNA微小RNA出血转化血脑屏障Long Non-Coding RNA Circular RNA MicroRNA Hemorrhagic Transformation Blood-Brain Barrier
摘要: 出血性转化是急性缺血性卒中后的一种常见并发症,导致不良的预后。目前认为,出血转化的发生与血脑屏障的破坏密切相关。近年来发现非编码RNA可以作为基因表达的转录后调节因子在血脑屏障通透性中起着至关重要的作用。本文就血脑屏障与出血转化、非编码RNA之间内在联系方面的研究进展进行综述,以探索非编码RNA在缺血性卒中后出血转化血脑屏障中的作用。
Abstract: Hemorrhagic transformation is a common complication after acute ischemic stroke, which leads to poor prognosis. At present, it is believed that the occurrence of hemorrhagic transformation is closely related to the destruction of the blood-brain barrier. In recent years, it has been found that non-coding RNA can be used as a post-transcriptional regulator of gene expression and plays an important role in blood-brain barrier permeability. This article reviews the research progress on the internal relationship between blood-brain barrier, hemorrhagic transformation and non-coding RNA, in order to explore the role of non-coding RNA in the transformation of blood-brain barrier af-ter ischemic stroke.
文章引用:韩荣荣, 张朋, 李道静, 张爱梅. 非编码RNA与缺血性卒中出血转化后血脑屏障关系研究进展[J]. 临床医学进展, 2022, 12(9): 8108-8114. https://doi.org/10.12677/ACM.2022.1291168

1. 引言

脑卒中是导致人类病残和病死的主要疾病之一,其中急性缺血性卒中约占全部脑卒中的80%。其治疗关键在于尽早开通堵塞血管、挽救缺血半暗带区 [1]。急性缺血性卒中后出血转化(Hemorrhagic transformation, HT)是急性缺血性卒中自发性或溶栓后发生的一种严重并发症,可导致神经功能恶化及不良预后 [2]。在临床工作中,对有HT风险的患者进行精确预测和分类将具有巨大的价值。相关研究已经发现了神经炎症、神经血管单位损伤、血脑屏障(blood-brain barrier, BBB)破坏和血管重塑等多种病理生理机制与出血转化的发生有关,其中血脑屏障的破坏目前被认为是HT的基本机制 [3]。在脑微血管内皮细胞中高度表达的非编码RNA (non-coding RNA, ncRNA),目前被认为是影响血脑屏障通透性的潜在介质。研究ncRNAs在调节BBB通透性方面的功能,将有助于为中枢神经系统疾病的诊治寻找新的核酸靶点。因此非编码RNA与血脑屏障、HT的内在联系仍然值得我们进一步探索。

2. 非编码RNA与血脑屏障

血脑屏障主要由脑微血管内皮细胞、周细胞和星形胶质细胞尾足组成。血脑屏障能够维持脑组织内环境的稳态,保护大脑免受血液循环中的外源性物质和神经毒性代谢物的影响。脑微血管内皮细胞(brain micro-vascular endothelial cell, BMEC)是血脑屏障不可或缺的独特结构组成部分。在BMECs间有紧密连接(tight junctions, TJs)的存在,从而导致了内皮细胞的高电阻和细胞旁的低通透性。TJs由几种完整的膜蛋白组成,包括咬合蛋白(occludin)、闭合蛋白(claudins)和连接粘附分子(junctional adhesion molecules, JAMs),所有这些蛋白都通过胞质附着蛋白(zonula occludens, ZO)家族成员(如ZO-1、-2、-3)连接到细胞内的肌动蛋白细胞骨架 [4]。这些TJs在BMECs中的减少或分布改变可以增加BBB通透性,这是BBB功能障碍的一个重要影响因素 [5]。而血脑屏障的破坏和通透性的增加是多种神经系统疾病发展的关键,如卒中、阿尔茨海默病、多发性硬化症、创伤性脑损伤和脑膜炎等,通常这些疾病会伴随血脑屏障通透性的增加而发展,并进一步导致不可逆转的中枢神经系统损伤 [6] [7] [8]。

非编码RNA是一种功能性RNA分子,可以通过不同的机制调节mRNA的表达和功能。许多ncRNAs,如转移RNA (transfer RNA, tRNA)和核糖体RNA (ribosomal RNA, rRNA),直接参与翻译。除tRNA和rRNA外,ncRNA可大致分为小ncRNA (<200核苷酸,包括microRNA [miRNA]、soRNA、snoRNA、siRNA和piRNA),长度 > 200核苷酸的长非编码RNA (long non-coding RNA, lncRNA),和环状RNA (circular RNA, circRNA) [9]。ncRNAs具有特殊的共价环结构,曾经被认为没有生物功能。然而,随着研究的进展,ncRNAs越来越多地被认为是基因表达的关键调节因子,参与了多种重要的生物学和生理过程,包括发育、分化和代谢,以及各种人类疾病的病理过程 [10]。目前相关的研究发现,尤其是在中枢神经系统疾病中,在BMECs中高度表达的ncRNAs,如miRNA、lncRNA和circRNA,在调节血脑屏障通透性中起着极为关键的作用,被认为是影响血脑屏障通透性的潜在介质 [11]。

2.1. miRNA与血脑屏障

miRNA是内源性小的单链ncRNA分子,它通过对mRNA的降解或抑制翻译来负调控靶基因的表达。miRNA在许多哺乳动物的细胞中稳定存在,控制各种正常的生物过程,包括细胞增殖和分化、凋亡、免疫反应、血管生成和炎症 [12]。目前已证明某些特定的miRNA是调控血脑屏障损伤的重要因子。

在缺血性卒中中,MMP-9对BBB的细胞外基质成分及连接蛋白的降解起到关键作用,MMP-9已被证明是影响BBB分解的关键效应物 [13]。相关研究表明miR-132和miR-539可以通过靶向作用MMP-9直接调节BBB通透性,miR-21通过激活丝裂原活化蛋白激酶信号通路间接调节MMP-9 [14] [15] [16]。目前有研究证实,许多miRNA可以通过直接靶向TJs或间接调节TJs上游分子来负向调节TJs的表达,从而影响血脑屏障的完整性。在缺血性卒中的BMECs模型中,miR-155水平的降低增加了BMECs的跨上皮电阻,并通过直接靶向Claudin-1降低了BMECs的单层通透性 [17]。另一项研究表明,促炎条件增加了miR-155在小鼠内皮细胞和运动神经元中的表达,miR-155有助于限制缺血条件下MFSD2A的表达,至少部分是通过直接靶向MFSD2A转录本。增强的miR-155表达和炎症环境降低了小鼠内皮细胞和运动神经元细胞中内源性MFSD2A转录水平。MFSD2A与维持血脑屏障的完整性有关。而在miR-155缺失的小鼠模型中,缺血引起的血脑屏障损伤得到有效缓解。这可能表明脑微血管内皮细胞中高水平的miR-155可以通过直接或间接靶向调节MFSD2A来增加血脑屏障的通透性 [18]。此外,研究发现miR-34a可以通过靶向作用于BMEC中的细胞色素C从而引发BBB的分解 [19]。miR-182被报道通过下调mTOR/FOXO1通路加剧BBB中断 [20]。在有关卒中后出血转化的研究中,外源性miR-126-3p可通过靶向作用于PIK3R2抑制血管生成素(ANGPT)-1和血管内皮生长因子A (VEGFA)诱导的Akt活化来减轻BBB破坏 [21]。miR-27a-3p可以通过靶向作用于Aqp11对血脑屏障破坏和脑损伤起到保护作用 [22]。这些发现提示在缺血性卒中中,miRNA对BMEC屏障功能、BBB的完整性以及炎症反应,均发挥着重要调控作用。

2.2. lncRNA与血脑屏障

尽可长度超过200核苷酸的转录本通常被定义为lncRNA,lncRNA可以通过多种机制调节基因表达,包括调节转录因子活性和剪接机制、转录增强子、增加mRNA稳定性、在蛋白质复合物的组装中充当结构成分,以及作为miRNA的分子诱饵。虽然只有一小部分已确定的lncRNA被深入研究,他们在各种生理和病理过程,如细胞分化,肿瘤发生,转移,免疫反应,老化等,发挥着关键作用。且有越来越多的证据表明,lncRNA是血管功能的关键调节因子,包括血管生成、血管修复和炎症信号级联反应 [23]。最近的研究表明lncRNA也密切参与控制BBB的通透性。

在急性缺血性卒中患者的血液和脑脊液标本中,lncRNA SNHG4基因的表达显著下调。上调的SNHG4通过抑制miR-449c-5p激活STAT6信号通路。增强SNHG4的表达可以促进小胶质细胞的极化和抗炎因子的释放。因此,SNHG4上调可减轻脑缺血时的小胶质细胞参与的炎症反应和微血管介导的神经元损伤 [24]。在一项关于出血转化的研究中证实了通过上调SNHG3的表达激活TNFSF12/Fn14/STAT3信号通路从而增加了BBB的通透性 [25]。另有研究发现在短暂性缺血再灌注的MCAO模型中,SNHG3的缺失会削弱小鼠脑的缺血再灌注损伤 [26]。此外,研究发现在缺血性卒中发生后,SNHG8的过表达会抑制小鼠的神经元损伤、脑水肿和神经功能丧失 [27]。抑制VEGF可降低卒中后血脑屏障的通透性。越来越多的证据表明,lncRNA是卒中时VEGFA的新型内源性核酸调节分子。在缺氧缺糖诱导的BMEC中,lncMALAT1的表达显著升高,并且lncMALAT1可以通过靶向作用miR-145,增强VEGFA和ANGPT-2的表达,进而影响血脑屏障的完整性。VEGFA通过上调LOC102540519和HOXC13的表达,显著加重了卒中后血脑屏障的损伤。LOC102640519可以通过正向调节HOXC13的表达,负向调节ZO-1、occludin和Claudin-5的表达,从而增强血脑屏障的通透性 [28] [29]。这些发现提示,lncRNA的异常表达可能是调节血脑屏障通透性的一种途径。

2.3. circRNA与血脑屏障

circRNA是ncRNAs的另一个重要组成部分,circRNA是一类没有明确的5'末端帽子和3'末端poly(A)尾巴,并以共价键形成环形结构的非编码RNA分子 [30]。在人类的大脑、外周血和外泌体中circRNA的含量特别丰富,它们能够通过血脑屏障的能力使其成为中枢神经系统疾病诊断潜在标志物的完美候选者。circRNA的分子功能也是多样的,包括充当miRNA海绵、转录和剪接的调节因子、核糖体RNA处理以及蛋白质–蛋白质相互作用的适配子 [31]。关于circRNA的转录谱在不同中枢神经疾病模型中的报道也越来越多,如中风、脑膜炎、帕金森病和阿尔茨海默病 [32] [33] [34]。

在一个短暂性大脑中动脉闭塞小鼠卒中模型中,过表达的circDLGAP4通过竞争性结合miR-143来调节HECTD1,从而增加紧密连接蛋白的表达,可以显著减轻神经功能缺损,减少梗死面积和BBB损伤 [35]。有研究报道circRNA HECW2抑制miR-30d的表达,并通过Notch/Notch1途径,促进ATG5生成,从而促进内皮细胞间质化,进而破坏BBB。circRNA HECW2敲除后可以上调miR-30e-5p的表达,抑制NEGR1生成,从而抑制内皮细胞间质化,进而保护BBB [36] [37]。此外还有研究发现在出血转化的患者和大脑中动脉闭塞/再灌注模型小鼠的BMEC中检测到上调的circ-foxo3和自噬小体。在体内和体外研究进一步证实了circ-foxo3主要通过抑制mtorc1促进自噬活化,从而减轻血脑屏障的损伤 [38]。这些发现提示,作为非编码RNA的一种重要类型,在脑组织中高表达的circRNA在BBB功能障碍的中枢神经系统疾病中,可能具有重要的调节潜力。

3. 缺血性卒中后发生出血转化的基本机制——血脑屏障破坏

急性缺血性卒中后的HT主要是通过某些脑梗塞区域在放射影像上表现为脑出血时被诊断出来的。HT往往发生在急性缺血性卒中后几个小时甚至几周的一段不确定的时间内。急性缺血性卒中可以通过氧化应激和再灌注损伤破坏BBB基底层和内皮紧密连接,从而导致血管通透性增加和脑实质血液外渗。从结构上看,卒中后出血转化主要是急性缺血性卒中发生后,缺血区血管重新恢复血流灌注,外周的血液通过被破坏的血脑屏障渗入大脑所导致的 [39]。所以HT可能是急性缺血性卒中的自然进展,并且可以通过再灌注治疗促进或增强。因此了解BBB失调和HT病理生理学背后的机制可能有助于指导急性卒中的治疗决策和开发新的治疗靶点。

缺血性卒中后发生出血转化具体的病理生理机制可能涉及到再灌注损伤、氧化应激、炎性细胞浸润、血管活化和失调、细胞外蛋白水解等相关的级联反应,破坏了基底层和内皮细胞的完整性引起血脑屏障的破坏,从而可能触发HT [40]。对于静脉溶栓患者,重组人组织纤维蛋白溶酶原激活物(recombinant human tissue plasminogen activator, r-tPA)可以通过诱导BMEC中基质金属蛋白酶-9的释放,加速细胞外基质的降解,引起血脑屏障破坏,从而促进溶栓治疗后HT的发生。r-tPA除了直接激活内皮细胞外,还能动员外周中性粒细胞和T细胞,使其迁移到脑血管系统,加重内皮细胞损伤,从而加剧血脑屏障的破坏,促进HT的发生 [41]。对于动脉取栓患者,机械取栓过程中可导致血管内皮剥离、内弹力层破裂以及内膜水肿等直接机械损伤,会引起血脑屏障的破坏;其次,机械取栓后发生快速和突然的再灌注,也可引起血脑屏障破坏,从而导致HT的发生 [42]。此外,缺血再灌注后炎症、血管内皮生长因子、活性氧和基质金属蛋白酶-2等也参与血脑屏障的破坏和HT发生 [43]。由此可见血脑屏障的破环在HT的发生中起着关键的调节和促发作用。

4. 总结

目前血脑屏障的破坏被认为是HT的基本病理生理机制,而关于ncRNA的相关研究,显著提高了我们对BBB功能障碍机制的理解。有越来越多的证据支持ncRNA调控网络在血脑屏障完整性方面的积极作用。并且随着基因测序技术的发展,未来会识别出更多与出血转化相关的ncRNA,阐明它们之间的相互作用,将有助于对缺血性卒中出血转化的表观遗传学和相关的分子细节进行针对性探索,能够为早期诊断、适当治疗和改善发生出血转化患者预后等提供新的理论及数据支持,也可能为未来以ncRNA为靶标的药物开发提供一定的参考。

基金项目

2020年度山东省济宁市科技局重点研发项目(2020YXNS018)项目负责人:张爱梅;

2017年度山东省自然科学基金面上项目(ZR2017MH057)项目负责人:张爱梅。

NOTES

*通讯作者。

参考文献

[1] Miller, J.B., et al. (2017) The Advanced Reperfusion Era: Implications for Emergency Systems of Ischemic Stroke Care. Annals of Emergency Medicine, 69, 192-201.
https://doi.org/10.1016/j.annemergmed.2016.06.042
[2] Alberts, M.J. (2017) Stroke Treatment with Intravenous Tissue-Type Plasminogen Activator: More Proof That Time Is Brain. Circulation, 135, 140-142.
https://doi.org/10.1161/CIRCULATIONAHA.116.025724
[3] Yaghi, S., et al. (2017) Treatment and Outcome of Hemorrhagic Transformation after Intravenous Alteplase in Acute Ischemic Stroke: A Scien-tific Statement for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke, 48, e343-e361.
https://doi.org/10.1161/STR.0000000000000152
[4] Kaplan, L., Chow, B.W. and Gu, C. (2020) Neuronal Regulation of the Blood-Brain Barrier and Neurovascular Coupling. Nature Reviews Neuroscience, 21, 416-432.
https://doi.org/10.1038/s41583-020-0322-2
[5] Mastorakos, P., Mihelson, N., Luby, M., et al. (2021) Temporally Distinct Myeloid Cell Responses Mediate Damage and Repair after Cerebrovascular Injury. Nature Neuro-science, 24, 245-258.
https://doi.org/10.1038/s41593-020-00773-6
[6] Yang, R.-C., Qu, X.-Y., Xiao, S.-Y., et al. (2019) Meningitic Escherichia coli-Induced Upregulation of PDGF-B and ICAM-1 Aggravates Blood-Brain Barrier Disruption and Neu-roinflammatory Response. Journal of Neuroinflammation, 16, Article No. 101.
https://doi.org/10.1186/s12974-019-1497-1
[7] Pan, Y.B., Sun, Z.L. and Feng, D.F. (2017) The Role of Mi-croRNA in Traumatic Brain Injury. Neuroscience, 367, 189-199.
https://doi.org/10.1016/j.neuroscience.2017.10.046
[8] Sargento-Freitas, J., et al. (2018) Endothelial Progenitor Cells Enhance Blood-Brain Barrier Permeability in Subacute Stroke. Neurology, 90, e127-e134.
https://doi.org/10.1212/WNL.0000000000004801
[9] Sun, P., et al. (2018) MicroRNA-Based Therapeutics in Central Nervous System Injuries. Journal of Cerebral Blood Flow & Metabolism, 38, 1125-1148.
https://doi.org/10.1177/0271678X18773871
[10] Zhang, L. and Wang, H. (2019) Long Non-Coding RNA in CNS Injuries: A New Target for Therapeutic Intervention. Molecular Therapy—Nucleic Acids, 17, 754-766.
https://doi.org/10.1016/j.omtn.2019.07.013
[11] Chen, M., et al. (2021) Long Non-Coding RNAs and Circular RNAs: Insights into Microglia and Astrocyte Mediated Neurological Diseases. Frontiers in Molecular Neuroscience, 14, Article ID: 745066.
https://doi.org/10.3389/fnmol.2021.745066
[12] Strub, G.M. and Perkins, J.A. (2018) MicroRNAs for the Pediat-ric Otolaryngologist. International Journal of Pediatric Otorhinolaryngology, 112, 195-207.
https://doi.org/10.1016/j.ijporl.2018.06.043
[13] Jayaraj, R.L., Azimullah, S., et al. (2019) Neuroinflammation: Friend and Foe for Ischemic Stroke. Journal of Neuroinflammation, 16, 142.
https://doi.org/10.1186/s12974-019-1516-2
[14] Zuo, X., et al. (2019) MicroRNA-132 Attenuates Cerebral Injury by Protecting Blood-Brain-Barrier in MCAO Mice. Experimental Neurology, 316, 12-19.
https://doi.org/10.1016/j.expneurol.2019.03.017
[15] Fan, F., et al. (2018) MiR-539 Targets MMP-9 to Regulate the Permeability of Blood-Brain Barrier in Ischemia/Reperfusion Injury of Brain. Neurochemical Research, 43, 2260-2267.
https://doi.org/10.1007/s11064-018-2646-0
[16] Yao, X., Wang, Y. and Zhang, D. (2018) mi-croRNA-21 Confers Neuroprotection against Cerebral Ischemia-Reperfusion Injury and Alleviates Blood-Brain Barrier Disruption in Rats via the MAPK Signaling Pathway. Journal of Molecular Neuroscience, 65, 43-53.
https://doi.org/10.1007/s12031-018-1067-5
[17] Pena-Philippides, J.C., Gardiner, A.S., et al. (2018) Inhibition of MicroRNA-155 Supports Endothelial Tight Junction Integrity Following Oxygen-Glucose Deprivation. Journal of the American Heart Association, 7, e009244.
https://doi.org/10.1161/JAHA.118.009244
[18] Awad, H., et al. (2018) MiR-155 Deletion Reduces Ische-mia-Induced Paralysis in an Aortic Aneurysm Repair Mouse Model: Utility of Immunohistochemistry and Histopatholo-gy in Understanding Etiology of Spinal Cord Paralysis. Annals of Diagnostic Pathology, 36, 12-20.
https://doi.org/10.1016/j.anndiagpath.2018.06.002
[19] Hu, H., et al. (2020) MiR-34a Interacts with Cytochrome c and Shapes Stroke Outcomes. Scientific Reports, 10, Article No. 3233.
https://doi.org/10.1038/s41598-020-59997-y
[20] Zhang, T., et al. (2020) MicroRNA-182 Exacerbates Blood-Brain Barrier (BBB) Disruption by Downregulating the mTOR/FOXO1 Pathway in Cerebral Ischemia. FASEB Journal, 34, 13762-13775.
https://doi.org/10.1096/fj.201903092R
[21] Xi, T., Jin, F., et al. (2017) MicroRNA-126-3p Attenuates Blood-Brain Barrier Disruption, Cerebral Edema and Neuronal Injury Following Intracerebral Hemorrhage by Regulating PIK3R2 and Akt. Biochemical and Biophysical Research Communications, 494, 144-151.
https://doi.org/10.1016/j.bbrc.2017.10.064
[22] Xi, T., Jin, F., et al. (2018) miR-27a-3p Protects against Blood-Brain Barrier Disruption and Brain Injury after Intracerebral Hemorrhage by Targeting Endothelial Aquaporin-11. Journal of Biological Chemistry, 293, 20041-20050.
https://doi.org/10.1074/jbc.RA118.001858
[23] Peng, H. and Li, H. (2019) The Encouraging Role of Long Noncoding RNA Small Nuclear RNA Host Gene 16 in Epithelial-Mesenchymal Transition of Bladder Cancer via Di-rectly Acting on miR-17-5p/Metalloproteinases 3 Axis. Molecular Carcinogenesis, 58, 1465-1480.
https://doi.org/10.1002/mc.23028
[24] Zhang, S., Sun, W.C., Liang, Z.D., et al. (2020) LncRNA SNHG4 Attenu-ates Inflammatory Responses by Sponging miR-449c-5p and Up-Regulating STAT6 in Microglial during Cerebral Is-chemia-Reperfusion Injury. Drug Design, Development and Therapy, 14, 3683-3695.
https://doi.org/10.2147/DDDT.S245445
[25] Zhang, J., et al. (2019) LncRNA Snhg3 Contributes to Dysfunction of Cerebral Microvascular Cells in Intracerebral Hemorrhage Rats by Activating the TWEAK/Fn14/STAT3 Pathway. Life Sciences, 237, Article ID: 116929.
https://doi.org/10.1016/j.lfs.2019.116929
[26] Huang, D., Cao, Y., Zu, T. and Ju, J. (2022) Interference with Long Noncoding RNA SNHG3 Alleviates Cerebral Ischemia-Reperfusion Injury by Inhibiting Microglial Activation. Journal of Leukocyte Biology, 111, 759-769.
https://doi.org/10.1002/JLB.1A0421-190R
[27] Tian, J., Liu, Y., Wang, Z., et al. (2021) LncRNA Snhg8 Attenu-ates Microglial Inflammation Response and Blood-Brain Barrier Damage in Ischemic Stroke through Regulating miR-425-5p Mediated SIRT1/NF-κB Signaling. Journal of Biochemical and Molecular Toxicology, 35, e22724.
https://doi.org/10.1002/jbt.22724
[28] Ren, L., Wei, C., Li, K. and Lu, Z. (2019) LncRNA MALAT1 Up-Regulates VEGF-A and ANGPT2 to Promote Angiogenesis in Brain Microvascular Endothelial Cells against Oxygen-Glucose Deprivation via Targetting miR-145. BioScientific Reports, 39, BSR20180226.
https://doi.org/10.1042/BSR20180226
[29] Wu, L., Ye, Z., Pan, Y., et al. (2018) Vascular Endothelial Growth Factor Aggravates Cerebral Ischemia and Reperfusion-Induced Blood-Brain-Barrier Disruption through Regulating LOC102640519/HOXC13/ZO-1 Signaling. Experimental Cell Research, 369, 275-283.
https://doi.org/10.1016/j.yexcr.2018.05.029
[30] Haddad, G. and Lorenzen, J.M. (2019) Biogenesis and Function of Circular RNAs in Health and in Disease. Frontiers in Pharmacology, 10, Article No. 428.
https://doi.org/10.3389/fphar.2019.00428
[31] Hanan, M., Soreq, H. and Kadener, S. (2017) CircRNAs in the Brain. RNA Biology, 14, 1028-1034.
https://doi.org/10.1080/15476286.2016.1255398
[32] Yang, R., et al. (2018) Circular RNA Transcriptomic Analy-sis of Primary Human Brain Microvascular Endothelial Cells Infected with Meningitic Escherichia coli. Molecular Therapy—Nucleic Acids, 13, 651-664.
https://doi.org/10.1016/j.omtn.2018.10.013
[33] Kumar, L., et al. (2018) Functional Characterization of Novel Cir-cular RNA Molecule, circzip-2 and Its Synthesizing Gene zip-2 in C. elegans Model of Parkinson’s Disease. Molecular Neurobiology, 55, 6914-6926.
https://doi.org/10.1007/s12035-018-0903-5
[34] Liu, W., et al. (2019) Novel Circular RNAs Expressed in Brain Microvascular Endothelial Cells after Oxygen-Glucose Deprivation/Recovery. Neural Regeneration Research, 14, 2104-2111.
https://doi.org/10.4103/1673-5374.262589
[35] Bai, Y., et al. (2018) Circular RNA DLGAP4 Ame-liorates Ischemic Stroke Outcomes by Targeting miR-143 to Regulate Endothelial-Mesenchymal Transition Associated with Blood-Brain Barrier Integrity. Journal of Neuroscience, 38, 32-50.
https://doi.org/10.1523/JNEUROSCI.1348-17.2017
[36] Yang, L., Han, B., Zhang, Y., et al. (2018) Engagement of Circular RNA HECW2 in the Nonautophagic Role of ATG5 Implicated in the Endothelial-Mesenchymal Transition [Published Correction Appears in Autophagy. 2022 Jan; 18(1): 234] [Published Correction Appears in Autophagy. 2020 Nov; 16(11): 2119]. Autophagy, 14, 404-418.
https://doi.org/10.1080/15548627.2017.1414755
[37] Dong, Y., Fan, X., Wang, Z., Zhang, L. and Guo, S. (2020) Circ_HECW2 Functions as a miR-30e-5p Sponge to Regulate LPS-Induced Endothelial-Mesenchymal Transition by Mediating NEGR1 Expression. Brain Research, 1748, Article ID: 147114.
https://doi.org/10.1016/j.brainres.2020.147114
[38] Yang, Z., Huang, C., Wen, X., et al. (2022) Circular RNA circ-FoxO3 Attenuates Blood-Brain Barrier Damage by Inducing Autophagy during Ischemia/Reperfusion. Molecular Therapy, 30, 1275-1287.
https://doi.org/10.1016/j.ymthe.2021.11.004
[39] Silverman, A., et al. (2020) Hemodynamics and Hemorrhagic Transformation after Endovascular Therapy for Ischemic Stroke. Frontiers in Neurology, 11, Article No. 728.
https://doi.org/10.3389/fneur.2020.00728
[40] Krishnamoorthy, S., et al. (2021) Biomarkers in the Prediction of Hemorrhagic Transformation in Acute Stroke: A Systematic Review and Meta-Analysis. Cerebrovascular Diseases, 51, 235-247.
https://doi.org/10.1159/000518570
[41] Shi, K., et al. (2021) tPA Mobilizes Immune Cells That Exacer-bate Hemorrhagic Transformation in Stroke. Circulation Research, 128, 62-75.
https://doi.org/10.1161/CIRCRESAHA.120.317596
[42] van Kranendonk, K.R., et al. (2019) Hemorrhagic Trans-formation Is Associated with Poor Functional Outcome in Patients with Acute Ischemic Stroke Due to a Large Vessel Occlusion. Journal of NeuroInterventional Surgery, 11, 464-468.
https://doi.org/10.1136/neurintsurg-2018-014141
[43] Spronk, E., et al. (2021) Hemorrhagic Transformation in Ischemic Stroke and the Role of Inflammation. Frontiers in Neurology, 12, Article ID: 661955.
https://doi.org/10.3389/fneur.2021.661955