移动环境下Fisher-KPP方程受迫行波解的存在性
Existence of Forced Traveling Waves for Fisher-KPP Equation under a Shifting Habitat
DOI: 10.12677/PM.2022.123050, PDF, HTML, 下载: 358  浏览: 581  科研立项经费支持
作者: 赵林林:长沙理工大学数学与统计学院,湖南 长沙
关键词: 移动环境Fisher-KPP方程单调迭代Shifting Habitat Fisher-KPP Equation Monotone Iterative
摘要: 考虑移动环境下Fisher-KPP方程在其内禀增长率函数非负条件下受迫行波解的存在性。 利用单调迭代结合上下解方法的技巧,证明了任意正的恒定速度移动下非减受迫行波的存在性。
Abstract: In this paper, we are concerned with the existence of forced traveling wave solutions for Fisher-KPP equation in the habitat shifting under the condition that its intrinsic growth rate function is nonnegative. Using the technique of monotone iteration combined with the upper and lower solution method, the existence of non-decreasing forced traveling waves under arbitrary positive constant shifting speed is proved.
文章引用:赵林林. 移动环境下Fisher-KPP方程受迫行波解的存在性[J]. 理论数学, 2022, 12(3): 448-457. https://doi.org/10.12677/PM.2022.123050

参考文献

[1] Fisher, R. (1937) The Wave of Advance of Advantageous Gene. Annals of Human Genetics, 7, 355-369.
https://doi.org/10.1111/j.1469-1809.1937.tb02153.x
[2] Kolomgorov, A., Petrovskii, I. and Piskunov, N. (1937) Study of a Diffusion Equation That Is Related to the Growth of a Quality of Matter, and Its Application to a Biological Problem. Moscow University Mathematics Bulletin, 1, 1-26.
[3] Cantrell, R. and Cosner, C. (2003) Spatial Ecology via Reaction-Diffusion Equations. John Wiley and Sons, Chichester.
https://doi.org/10.1002/0470871296
[4] Lam, K. and Ni, W. (2012) Uniqueness and Complete Dynamics of the Lotka-Volterra Competition Diffusion System. SIAM Journal on Applied Mathematics, 72, 1695-1712.
https://doi.org/10.1137/120869481
[5] 倪维明. 浅谈反应扩散方程[J]. 数学传播, 2016, 34(4): 17-26.
[6] 楼元. 空间生态学中的一些反应扩散方程模型[J]. 中国科学: 数学, 2015, 45(10): 1619-1634.
[7] Aronson, D. and Weinberger, H. (1978) Multidimensional Nonlinear Diffusion Arising in Population Genetics. Advances in Mathematics, 30, 33-76.
https://doi.org/10.1016/0001-8708(78)90130-5
[8] Weinberger, H. (1982) Long-Time Behavior of a Class of Biological Models. SIAM Journal on Mathematical Analysis, 13, 353-396.
https://doi.org/10.1137/0513028
[9] Billingham, J. and Needham, D. (1991) A Note on the Properties of a Family of Travelling-Wave Solutions Arising in Cubic Autocatalysis. Dynamic Stability Systems, 6, 33-49.
https://doi.org/10.1080/02681119108806105
[10] Hou, X., Li, Y. and Meyer, K. (2010) Traveling Wave Solutions for a Reaction Diffusion Equation with Double Degenerate Nonlinearities. Discrete and Continuous Dynamical Systems, 26, 265-290.
https://doi.org/10.3934/dcds.2010.26.265
[11] Skellam, J. (1951) Random Dispersal in Theoretical Populations. Biometrika, 38, 196-218.
https://doi.org/10.1093/biomet/38.1-2.196
[12] Berestycki, H., Diekmann, O., Nagelkerke, C.J., et al. (2009) Can a Species Keep Pace with a Shifting Climate? Bulletin of Mathematical Biology, 71, 399-429.
https://doi.org/10.1007/s11538-008-9367-5
[13] Elith, J., Kearney, M. and Phillips, S. (2010) The Art of Modelling Range-Shifting Species. Methods in Ecology and Evolution, 1, 330-342.
https://doi.org/10.1111/j.2041-210X.2010.00036.x
[14] Li, B., Bewick, S., Jin, S., et al. (2014) Persistence and Spread of a Species with a Shifting Habitat Edge. SIAM Journal on Applied Mathematics, 74, 1397-1417.
https://doi.org/10.1137/130938463
[15] Li, B., Bewick, S., Barnard, M. and Fagan, W. (2016) Persistence and Spreading Speeds of Integro-Difference Equations with an Expanding or Contracting Habitat. Bulletin of Mathematical Biology, 78, 1337-1379.
https://doi.org/10.1007/s11538-016-0180-2
[16] Fang, J., Lou, Y. and Wu, J. (2016) Can Pathogen Spread Keep Pace with Its Host Invasion? SIAM Journal on Applied Mathematics, 76, 1633-1657.
https://doi.org/10.1137/15M1029564
[17] Berestycki, H. and Fang, J. (2018) Forced Waves of the Fisher-KPP Equation in a Shifting Environment. Journal of Differential Equations, 264, 2157-2183.
https://doi.org/10.1016/j.jde.2017.10.016
[18] Hu, H. and Zou, X. (2017) Existence of an Extinction Wave in the Fisher Equation with a Shifting Habitat. Proceedings of the American Mathematical Society, 145, 4763-4771.
https://doi.org/10.1090/proc/13687
[19] Li, W., Wang, J. and Zhao, X. (2018) Spatial Dynamics of a Nonlocal Dispersal Population Model in a Shifting Environment. Journal of Nonlinear Science, 28, 1189-1219.
https://doi.org/10.1007/s00332-018-9445-2
[20] Wang, J. and Zhao, X. (2019) Uniqueness and Global Stability of Forced Waves in a Shifting Environment. Proceedings of the American Mathematical Society, 147, 1467-1481.
https://doi.org/10.1090/proc/14235
[21] Zhang, Z., Wang, W. and Yang, J. (2017) Persistence versus Extinction for Two Competing Species under a Climate Change. Nonlinear Analysis: Modelling and Control, 22, 285-302.
https://doi.org/10.15388/NA.2017.3.1
[22] Yuan, Y., Wang, Y. and Zou, X. (2019) Spatial Dynamics of a Lotka-Volterra Model with a Shifting Habitat. Discrete and Continuous Dynamical Systems, Series B, 24, 5633-5671.
[23] Wu, C., Wang, Y. and Zou, X. (2019) Spatial-Temporal Dynamics of a Lotka-Volterra Competition Model with Nonlocal Dispersal under Shifting Environment. Journal of Differential Equations, 267, 4890-4921.
https://doi.org/10.1016/j.jde.2019.05.019
[24] Yang, Y., Wu, C. and Li, Z. (2019) Forced Waves and Their Asymptotics in a Lotka-Volterra Cooperative Model under Climate Change. Applied Mathematics and Computation, 353, 254- 264.
https://doi.org/10.1016/j.amc.2019.01.058
[25] Hu, H., Yi, T. and Zou, X. (2020) On Spatial-Temporal Dynamics of Fisher-KPP Equation with a Shifting Environment. Proceedings of the American Mathematical Society, 148, 213-221.
https://doi.org/10.1090/proc/14659
[26] Hu, H., Deng, L. and Huang, J. (2021) Traveling Wave of a Nonlocal Dispersal Lotka-Volterra Cooperation Model under Shifting Habitat. Journal of Mathematical Analysis and Applications, 500, Article ID: 125100.
https://doi.org/10.1016/j.jmaa.2021.125100