抑郁症个体奖赏敏感性异常及情绪失调的生物标记物
Biomarkers of Anhedonia and Mood Disorders in Depressed Individuals
摘要: 抑郁症是一种常见的复发性心境障碍,是当今世界范围内最常见的精神疾病之一。快感缺乏与情绪失调均是抑郁症的核心特征,反馈相关负波和晚期正成分分别为其生物标记物,根据目前的研究,反馈相关负波异常和晚期正成分异常与抑郁症之间存在关联,可以作为抑郁发作及抑郁症状程度加重的预测因素,对于早期诊断也有着重要意义。对大量的研究进行梳理之后发现,目前还存在着抑郁被试的筛选标准存在差异、反馈相关负波的来源、功能以及取值标准尚未统一的问题,并且,抑郁症的异质性对反馈相关负波以及晚期正成分是否有影响目前尚没有相关研究得出结论,在未来的研究中值得进一步深入探讨。
Abstract: Depression is a common recurrent mood disorder and one of the most common mental diseases in the world today. Anhedonia and mood disorders are the core characteristics of depression. Feedback-related negative and late positive component are the biomarkers, respectively. According to the current study, feedback-related negative abnormality and late positive component abnormality are associated with depression, which can be used as a predictor of depressive episode and aggravation of depressive symptoms, and is of great significance for early diagnosis. After sorting out a large number of studies, it is found that there are still differences in the screening criteria of depression subjects, and the source, function and value criteria of feedback-related negative have not been unified. In addition, whether the heterogeneity of depression has an effect on the feedback-related negative and the late positive component has not been concluded by relevant studies at present, which is worthy of further discussion in future studies.
文章引用:张欣, 王恩国 (2021). 抑郁症个体奖赏敏感性异常及情绪失调的生物标记物. 心理学进展, 11(6), 1410-1417. https://doi.org/10.12677/AP.2021.116158

1. 引言

抑郁症,又称重度抑郁障碍(major depressive disorder, MDD),是一种常见的复发性心境障碍,对于人类社会而言是一项发病率高,持久性长,后果严重的精神疾病。发作时主要表现为持续的心境低落、意志行为减退、思维迟缓以及躯体症状等(谢生辉等,2013),是当今世界最为常见的精神疾病之一。调查显示,15%以上的抑郁症病人有自杀倾向(费立鹏,2004),发病率高、自杀率高、危害性大,不仅会给患者带来严重的身心痛苦,同时也会给社会造成巨大的经济负担(Greenberg et al., 2015),因此早期诊断尤为重要。

MDD的临床表现复杂且多样,包含精神障碍以及躯体功能障碍,核心症状主要为快感缺乏、情绪失调等。快感缺乏,表现为个体对令人感到愉快的经历缺乏兴趣亦或是体验到的愉悦感减弱(Klawohn et al., 2020)。情绪失调表现为长时间的抑郁情绪、丧失快乐等(Aldao, Nolenhoeksema, & Schweizer, 2010)。目前大量研究集中于MDD的致病因素,其中以认知因素的研究最为集中,特别是认知偏向,但是对于这种偏向潜在神经生理学基础的研究并不是很多。并且MDD具有很强的异质性,在病因学原理、症状、治疗以及后期干预等诸多方面均存在差别(Fried, 2017),缺乏预测的客观评估标准,这也导致很难预测抑郁发作及抑郁症状严重程度,既制约了临床实践,也限制了理论研究。所以对MDD个体核心症状背后的神经生理学基础进行研究,找到其生物标记物,对于预测抑郁发作、抑郁症状程度加重以及早期诊断有着重要意义。

2. 抑郁症个体的奖赏敏感性异常

2.1. 抑郁症个体的奖赏系统功能障碍

大量的行为学、电生理学以及脑成像学研究显示,认知偏向,又称心境一致性认知偏向(mood-congruent bias),以加工偏向负性、积极偏向缺失以及认知控制受损为特点,该特点存在于MDD个体的各个认知环节中,主要是由于MDD个体的奖赏系统(reward system)存在缺陷。具体而言,纹状体与积极情绪的加工密切相关(Groenewold et al., 2013),是奖赏环路重要组成部分,但是MDD个体纹状体对正性信息的激活较健康同龄个体减弱,除此之外,同为奖赏环路重要组成部分的边缘区活动减少、额区激活增加(Demenescu et al., 2011)。还有研究表明,MDD个体奖赏系统的缺陷与中脑皮质区的活动异常有关(Dunlop et al., 2020),可能是MDD个体快感缺失的神经生理学基础。

有研究(Pizzagalli et al., 2008)使用信号检测任务发现,MDD个体较于健康同龄个体,未表现出对奖赏刺激的反应偏好。也有研究(Forbes et al., 2007)使用赌博任务发现,相对于健康儿童的反应方式受潜在奖赏大小的影响,MDD儿童对奖赏大小不敏感。除了以上的行为实验证据,神经影像学的研究发现,MDD个体在接受奖赏刺激时相较于健康同龄人纹状体激活减少(Kujawa & Burkhouse, 2017),抑郁水平较高的非临床被试(McCabe et al., 2012)、存在家族抑郁史的健康青少年(Gotlib et al., 2010)在接受奖赏时也会出现与MDD个体相似的纹状体激活异常,进一步研究发现,MDD个体的纹状体与参与动机调节的前额叶皮层之间的功能连接存在异常(Kaiser et al., 2015; Treadway & Pizzagalli, 2014),纹状体与前额叶都是奖赏环路的组成部分,综上所述,MDD与奖赏系统功能障碍密切相关。

2.2. 抑郁症个体的反馈相关负波异常

快感缺失是MDD个体的核心特征之一,主要表现为低奖赏敏感性或奖赏敏感性异常,即低奖赏敏感性或奖赏敏感性异常是MDD的标志之一(Bress, Foti, et al., 2012a; Brush et al., 2018)。反馈相关负波(feedback related negativity, FRN)出现在决策后,与反馈加工过程紧密相关(Weismüller & Bellebaum, 2016),对反馈效价高度敏感,在反馈呈现后250~300毫秒范围内出现,反映了奖赏敏感性(Proudfit, 2015),因此在脑电生理研究中可以作为奖赏敏感性的客观电生理指标(Foti et al., 2011),目前在MDD相关研究中已初步显露出应用价值,即FRN异常或许可以成为预测抑郁发作及抑郁症状严重程度的生理指标。

FRN常见的研究范式有奖赏激励延迟任务、奖赏预期违背任务、简单赌博任务等(He et al., 2017; Hixson et al., 2019; Morie et al., 2016; Yau et al., 2015)。已有研究发现,患有MDD的学龄前儿童(Belden et al., 2016)、在校大学生(Liu et al., 2014)、青壮年(Klawohn et al., 2020)、产前女性(Mulligan et al., 2019)在获得奖赏时诱发的FRN波幅及FRN差异波均较同龄人小,说明奖赏敏感性异常是MDD个体的共同特征,作为奖赏敏感性的客观生理指标具有跨群体的稳定性(秦浩方,黄蓉,贾世伟,2021)。

上文论述了MDD与FRN异常存在相关关系,那么对于两者的先后关系,即“FRN异常对MDD是否有预测作用”这个问题,也有学者做了一系列研究。2012年,Bress等人(2012b)研究发现较低的奖赏FRN以及较为平缓的FRN差异波可以预测较为严重的抑郁症状,从而证明奖赏敏感性异常对抑郁发作以及抑郁症状的加重具有预测作用。在此研究的基础上,有更进一步的研究(Nelson et al., 2016; 2018)也证明了FRN差异波对抑郁发作以及抑郁症状的严重程度具有预测作用,并且发现FRN差异波平缓与基线抑郁症状得分高相结合预测准确性最高。

相关研究均表明,与正性刺激相比,FRN表现为更加敏感于负性刺激(Walentowska et al., 2016)。对于这种研究结果存在着不同的解释,主要可以分为两种:一种认为FRN本身反映了负性结果加工,是一种奖赏预期错误信号(reward prediction error, RPE),并据此提出了强化学习理论(the reinforcement learning theory, RL)。另一种认为FRN仅仅是反馈奖赏系统的活动,正负反馈均会诱发一个负成分,而正反馈条件会诱发一个名为奖赏正波(reward positivity, RewP)的正成分去抵消正反馈条件诱发的负成分,从而造成正负反馈条件FRN波幅差异(Foti et al., 2011; Proudfit, 2015)。与上述两种说法相对应,FRN的取值也一直存在着争议。支持强化学习理论的研究者认为应该对正负反馈条件下的原始FRN取值,支持正负反馈条件FRN波幅差异本质上是由RewP抵消了正反馈条件诱发的负成分造成的研究者认为应先对正负反馈条件下的FRN做差异波,再从差异波中取值,即FRN为反馈信息呈现后200~400 ms出现的最大负波值与此负波前出现的正波最正值之间的差异(Leng & Zhou, 2014)。

综上,虽然已经有大量的研究证明了MDD与FRN异常存在相关关系,并且也证明了FRN异常对MDD具有预测作用,但是由于同时存在着FRN的来源、功能以及取值标准不统一的问题,所以会出现相同结果不同结论的现象,应尽快形成一个统一的FRN理论,以便后续研究的发展。

3. 抑郁症个体的情绪失调

3.1. 抑郁症个体的情绪调节功能障碍

负性生活事件会产生负性情绪体验,而过多、持续的负性情绪体验会严重危害个体身心健康,因此情绪调节是人类适应环境的重要认知功能之一,用以促进个体身心健康发展(Gross, 2015)。情绪调节,即个体根据内外环境的要求,在对情绪进行监控和评估的基础上,采用一定的行为策略对情绪进行影响和控制以保持个体内外适应的过程,在情绪的发生、体验、表达等不同阶段,可以采用不同的行为策略区进行情绪调节,日常生活中较为常见且常用的为认知重评、分心和表达抑制等(窦伟伟等,2014;袁加锦等,2014)。已有研究发现,与健康个体相比,MDD个体会更加频繁使用沉思、表达抑制等不良策略(Aldao, Nolenhoeksema, & Schweizer, 2010),而较少采用认知重评等适应性策略。进一步研究表明,MDD个体不仅会自发采用不良情绪调节方式,还缺乏对情绪进行有效调节的动机(Majid, 2011)。

所以在对MDD发病机制的探索中,研究者认为情绪调节功能障碍可能是导致MDD发生、持续、复发的一个重要原因(Sheppes, Suri, & Gross, 2015)。

3.2. 抑郁症个体诱发的脑电晚期正成分异常

晚期正成分(late positive potential, LPP),一种正向慢波,是事件相关电位(event related potentials, ERPs)的重要成分之一,主要分布在头皮的顶叶–中央区,对刺激的唤醒度敏感,大约在刺激呈现300 ms之后出现,持续到整个刺激呈现结束(Thiruchselvam et al., 2011),可以作为刺激的情绪唤醒特征的有效客观指标(Olofsson et al., 2008),是研究情绪刺激控制加工的理想脑电成分,广泛应用于情绪调节的研究中。

LPP 可以反映情绪强度。研究表明,无论是图片刺激还是文字刺激,情绪性刺激都会比中性刺激诱发更大的LPP波幅(Proudfit et al., 2015)。究其原因,从生物进化的角度而言,负性刺激对个体的生存以及进化具有更大的威胁性,所以会诱发更强的情绪以及动机反应,以触发更深层次以及更加精细的加工(李红等,2019)。相关研究表明,负性情绪刺激的确会诱发个体更高的唤醒度,并且个体唤醒度越高,所诱发的LPP波幅也就越大(Schupp et al., 2000)。

LPP还可以反映动机强度。LPP波幅可以作为表征情绪性刺激的动机性注意以及动机强度的指标(Schupp et al., 2000; Lang & Bradley, 2010; Gable & Harmon-Jones, 2013)。LPP本身无法反映动机的方向,但是动机的方向可以和情绪效价相联系,即趋近动机与正性情绪有关,回避动机与负性情绪有关(Bamford & Ward, 2008)。已有研究表明,对正性刺激趋近动机强度越高(Gable & Harmon-Jones, 2013; Gable & Poole, 2014)、回避负性刺激回避动机强度越高(Leutgeb, Schäfer, & Schienle, 2009; Michalowski et al., 2009),都会诱发更大波幅的LPP。所以LPP波幅不仅可以反映动机强度,还可以更进一步反映情绪刺激诱发的趋避动机的强度,以此成为表征趋避动机强度的客观生理指标(Schupp et al., 2000; Lang & Bradley, 2010)。

综上,LPP不仅可以反应情绪强度,还可以反映个体趋避动机强度。已有研究表明,MDD个体以及抑郁程度较高的个体相较于健康同龄个体对正性和负性刺激都表现出更弱的LPP波幅(MacNamara, Kotov, & Hajcak, 2016; Weinberg et al., 2016; Admon & Pizzagalli, 2015; MacNamara, Kotov, & Hajcak, 2016; Proudfit et al., 2015),进一步研究发现,情绪刺激所诱发的LPP波幅与MDD个体的抑郁程度呈负相关(MacNamara, Kotov, & Hajcak, 2016; Weinberg et al., 2016)。以上研究均可表明MDD个体以及抑郁倾向较高的个体对于正性刺激的趋近动机以及对于负性刺激的回避动机相较于健康同龄个体较弱,表现在日常生活中便是相较于健康同龄个体,MDD个体以及抑郁倾向较高的个体会更少趋近正性刺激,即使他们感到快乐的刺激与场景,同时更少回避负性刺激,即使他们感到悲伤的刺激与场景,也因此,MDD个体以及抑郁倾向较高的个体相较于健康同龄个体会更少体验到快乐而更多体验到悲伤(李红等,2019)。

4. 总结与展望

快感缺乏与情绪失调均是MDD的核心特征,FRN和LPP分别为其生物标记物,根据目前的研究,FRN异常与LPP异常与MDD之间存在关联,可以作为抑郁发作及抑郁症状程度加重的客观生理预测因素,即生物标志物,对于早期诊断也有着重要意义。然而,MDD个体奖赏敏感性异常及情绪失调研究仍有诸多问题有待回答。

首先,MDD个体的筛选标准存在差异。上述研究中的抑郁被试,筛选标准各不相同,有发病期MDD个体,也有康复期MDD个体,还有有家族遗传病史的非临床MDD个体;有轻度抑郁个体,也有重度抑郁个体;有的在接受治疗服用抗抑郁药物,有的未服用抗抑郁药物;并且被试的年龄、性别分布也各不相同,这些因素很有可能会影响到实验结果(张阔,王春梅,王敬欣,2016),未来可以做系列研究来探索上述结论是否具有跨群体稳定性。

其次,FRN的来源、功能以及取值问题。由于ERP技术本身空间分辨率不是很高,空间定位不精确,所以FRN的溯源定位仅供参考(李丹阳,李鹏,李红,2018)。与此同时,FRN的功能以及取值也一直存在争议,一种说法认为FRN反映的就是负反馈加工本身,可以直接作为对消极信息敏感的客观生理指标(Hajcak et al., 2006),所以应对正负反馈条件下的原始FRN直接取值;而另一种说法认为正反馈条件下诱发的FRN反映的是奖赏加工,正负反馈条件下的FRN差异才可以作为奖赏敏感性的客观生理指标(Foti et al., 2011; Proudfit, 2015),所以应该先对正负反馈条件下的FRN做差异波,再从差异波中取值。两种说法都有一定的理论与研究支撑,所以一直没有一个统一的定论,这样会导致对研究结果的解释比较混乱,出现相同的研究结果得出不同结论的现象。所以应尽快形成一个统一的FRN理论,以便后续研究的发展。

最后,MDD的异质性对神经生理基础研究的影响。MDD具有很强的异质性,在病因学原理、症状、治疗以及后期干预等诸多方面均存在差别(Fried, 2017),并且不同症状的病因、病程等也各不相同(Day et al., 2015)。已有研究(Foti & Hajcak, 2009)表明,不同严重程度的MDD个体的FRN波幅有所不同,其FRN差异波随抑郁症状严重程度的增高而趋缓;还有研究(Bress et al., 2012b)证明抑郁程度与奖赏敏感性具有负相关,并且跨年龄段稳定。但是MDD的异质性对于FRN和LPP是否有影响目前还没有相关研究得出结论,在未来的研究中值得进一步深入探讨。

基金项目

河南省哲学社会科学规划项目2020BJY010;国家社科基金项目20FJKB005。

NOTES

*通讯作者。

参考文献

[1] 窦伟伟, 郑希付, 杨慧芳, 王俊芳, 李悦, 俄小天, 等(2014). 认知分心的强度对创伤性信息加工的影响. 心理学报, 46(5), 656-665.
[2] 费立鹏(2004). 中国的自杀现状及未来的工作方向. 中华流行病学杂志, 25(4), 277-279.
[3] 李丹阳, 李鹏, 李红(2018). 反馈负波及其近10年理论解释. 心理科学进展, 26(9), 1642-1650.
[4] 李红, 杨小光, 郑文瑜, 王超(2019). 抑郁倾向对个体情绪调节目标的影响——来自事件相关电位的证据. 心理学报, 51(6), 637-647.
[5] 秦浩方, 黄蓉, 贾世伟(2021). 反馈相关负波: 一种抑郁症的生物标记物. 心理科学进展, 29(3), 404-413.
[6] 谢生辉, 牛广明, 韩晓东, 乔鹏飞(2013). 抑郁症磁共振脑功能应用研究进展. 国际医学放射学杂志, 36(6), 520-524.
[7] 袁加锦, 龙泉杉, 丁南翔, 娄熠雪, 刘莹莹, 杨洁敏(2014). 负性情绪调节的效率: 中国文化背景下认知重评与表达抑制的对比. 中国科学: 生命科学, 44(6), 602-613.
[8] 张阔, 王春梅, 王敬欣(2016). 抑郁症患者认知重评和分心情绪调节的有效性: ERPs研究. 心理学探新, 36(3), 245-250.
[9] Admon, R., & Pizzagalli, D. A. (2015). Dysfunctional Reward Processing in Depression. Current Opinion in Psychology, 4, 114-118.
https://doi.org/10.1016/j.copsyc.2014.12.011
[10] Aldao, A., Nolen-hoeksema, S., & Schweizer, S. (2010). Emotion Regulation Strategies across Psychopathology: A Meta-Analytic Review. Clinical Psychology Review, 30, 217-237.
https://doi.org/10.1016/j.cpr.2009.11.004
[11] Bamford, S., & Ward, R. (2008). Predispositions to Approach and Avoid Are Contextually Sensitive and Goal Dependent. Emotion (Washington, D.C.), 8, 174-183.
https://doi.org/10.1037/1528-3542.8.2.174
[12] Belden, A. C., Irvin, K., Hajcak, G., Kappenman, E. S., Kelly, D., Karlow, S., Barch, D. M. et al. (2016). Neural Correlates of Reward Processing in Depressed and Healthy Preschool-Age Children. Journal of the American Academy of Child & Adolescent Psychiatry, 55, 1081-1089.
https://doi.org/10.1016/j.jaac.2016.09.503
[13] Bress, J. N., Foti, D., Kotov, R., Klein, D. N., & Hajcak, G. (2012a). Blunted Neural Response to Rewards Prospectively Predicts Depression in Adolescent Girls. Psychophysiology, 50, 74-81.
https://doi.org/10.1111/j.1469-8986.2012.01485.x
[14] Bress, J. N., Smith, E., Foti, D., Klein, D. N., & Hajcak, G. (2012b). Neural Response to Reward and Depressive Symptoms in Late Childhood to Early Adolescence. Biological Psychology, 89, 156-162.
https://doi.org/10.1016/j.biopsycho.2011.10.004
[15] Brush, C. J., Ehmann, P. J., Hajcak, G., Selby, E. A., & Alderman, B. L. (2018). Using Multilevel Modeling to Examine Blunted Neural Responses to Reward in Major Depression. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3, 1032-1039.
https://doi.org/10.1016/j.bpsc.2018.04.003
[16] Day, C. V., John Rush, A., Harris, A. W. F., Boyce, P. M., Rekshan, W., Etkin, A., Williams, L. M. et al. (2015). Impairment and Distress Patterns Distinguishing the Melancholic Depression Subtype: An iSPOT-D Report. Journal of Affective Disorders, 174, 493-502.
https://doi.org/10.1016/j.jad.2014.10.046
[17] Demenescu, L. R., Renken, R., Kortekaas, R., van Tol, M. J., Marsman, J. B. C., van Buchem, M. A., Aleman, A. et al. (2011). Neural Correlates of Perception of Emotional Facial Expressions in Out-Patients with Mild-to-Moderate Depression and Anxiety. A Multicenter fMRI Study. Psychological Medicine, 41, 2253-2264.
https://doi.org/10.1017/S0033291711000596
[18] Dunlop, K., Rizvi, S. J., Kennedy, S. H., Hassel, S., Strother, S. C., Harris, J. K., Downar, J. et al. (2020). Clinical, Behavioral, and Neural Measures of Reward Processing Correlate with Escitalopram Response in Depression: A Canadian Biomarker Integration Network in Depression (CAN-BIND-1) Report. Neuropsychopharmacology, 45, 1390-1397.
https://doi.org/10.1038/s41386-020-0688-x
[19] Forbes, E. E., Shaw, D. S., & Dahl, R. E. (2007). Alterations in Reward-Related Decision Making in Boys with Recent and Future Depression. Biological Psychiatry, 61, 633-639.
https://doi.org/10.1016/j.biopsych.2006.05.026
[20] Foti, D., & Hajcak, G. (2009). Depression and Reduced Sensitivity to Non-Rewards versus Rewards: Evidence from Event-Related Potentials. Biological Psychology, 81, 1-8.
https://doi.org/10.1016/j.biopsycho.2008.12.004
[21] Foti, D., Weinberg, A., Dien, J., & Hajcak, G. (2011). Event-Related Potential Activity in the Basal Ganglia Differentiates Rewards from Nonrewards: Temporospatial Principal Components Analysis and Source Localization of the Feedback Negativity. Human Brain Mapping, 32, 2207-2216.
https://doi.org/10.1002/hbm.21182
[22] Fried, E. (2017). Moving Forward: How Depression Heterogeneity Hinders Progress in Treatment and Research. Expert Review of Neurotherapeutics, 17, 423-425.
https://doi.org/10.1080/14737175.2017.1307737
[23] Gable, P. A., & Harmon-Jones, E. (2013). Does Arousal per Se Account for the Influence of Appetitive Stimuli on Attentional Scope and the Late Positive Potential? Psychophysiology, 50, 344-350.
https://doi.org/10.1111/psyp.12023
[24] Gable, P. A., & Poole, B. D. (2014). Influence of Trait Behavioral Inhibition and Behavioral Approach Motivation Systems on the LPP and Frontal Asymmetry to Anger Pictures. Social Cognitive and Affective Neuroscience, 9, 182-190.
https://doi.org/10.1093/scan/nss130
[25] Gotlib, I. H., Hamilton, J. P., Cooney, R. E., Singh, M. K., Henry, M. L., & Joormann, J. (2010). Neural Processing of Reward and Loss in Girls at Risk for Major Depression. Archives of General Psychiatry, 67, 380-387.
https://doi.org/10.1001/archgenpsychiatry.2010.13
[26] Greenberg, P. E., Fournier, A. A., Sisitsky, T., Pike, C. T., & Kessler, R. C. (2015). The Economic Burden of Adults with Major Depressive Disorder in the United States (2005 and 2010). Journal of Clinical Psychiatry, 76, 155-162.
https://doi.org/10.4088/JCP.14m09298
[27] Groenewold, N. A., Opmeer, E. M., de Jonge, P., Aleman, A., & Costafreda, S. G. (2013). Emotional Valence Modulates Brain Functional Abnormalities in Depression: Evidence from a Meta-Analysis of fMRI Studies. Neuroscience and Biobehavioral Reviews, 37, 152-163.
https://doi.org/10.1016/j.neubiorev.2012.11.015
[28] Gross, J. J. (2015). Emotion Regulation: Current Status and Future Prospects. Psychological Inquiry, 26, 1-26.
https://doi.org/10.1080/1047840X.2014.940781
[29] Hajcak, G., Moser, J. S., Holroyd, C. B., & Simons, R. F. (2006). The Feedback-Related Negativity Reflects the Binary Evaluation of Good versus Bad Outcomes. Biological Psychology, 71, 148-154.
https://doi.org/10.1016/j.biopsycho.2005.04.001
[30] He, W., Qi, A., Wang, Q., Wu, H., Zhang, Z., Gu, R., & Luo, W. (2017). Abnormal Reward and Punishment Sensitivity Associated with Internet Addicts. Computers in Human Behavior, 75, 678-683.
https://doi.org/10.1016/j.chb.2017.06.017
[31] Hixson, H., Burkhouse, K. L., Gorka, S. M., & Klumpp, H. (2019). A Preliminary Examination of the Relation between Neural Sensitivity to Reward and History of Alcohol Use Disorder among Adults with Internalizing Psychopathologies. Neuroscience Letters, 690, 17-22.
https://doi.org/10.1016/j.neulet.2018.10.003
[32] Kaiser, R. H., Andrews-Hanna, J. R., Wager, T. D., & Pizzagalli, D. A. (2015). Large-Scale Network Dysfunction in Major Depressive Disorder: A Meta-Analysis of Resting-State Functional Connectivity. JAMA Psychiatry, 72, 603-611.
https://doi.org/10.1001/jamapsychiatry.2015.0071
[33] Klawohn, J., Burani, K., Bruchnak, A., Santopetro, N., & Hajcak, G. (2020). Reduced Neural Response to Reward and Pleasant Pictures Independently Relate to Depression. Psychological Medicine, 59, 1-9.
https://doi.org/10.1017/S0033291719003659
[34] Kujawa, A., & Burkhouse, K. L. (2017). Vulnerability to Depression in Youth: Advances from Affective Neuroscience. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2, 28-37.
https://doi.org/10.1016/j.bpsc.2016.09.006
[35] Lang, P. J., & Bradley, M. M. (2010). Emotion and the Motivational Brain. Biological Psychology, 84, 437-450.
https://doi.org/10.1016/j.biopsycho.2009.10.007
[36] Leng, Y., & Zhou, X. L. (2014). Interpersonal Relationship Modulates Brain Responses to Outcome Evaluation When Gambling for/against Others: An Electrophysiological Analysis. Neuropsychologia, 63, 205-214.
https://doi.org/10.1016/j.neuropsychologia.2014.08.033
[37] Leutgeb, V., Schäfer, A., & Schienle, A. (2009). An Event Related Potential Study on Exposure Therapy for Patients Suffering from Spider Phobia. Biological Psychology, 82, 293-300.
https://doi.org/10.1016/j.biopsycho.2009.09.003
[38] Liu, W., Wang, L., Shang, H., Shen, Y., Li, Z., Cheung, E. F. C., & Chan, R. C. K. (2014). The Influence of Anhedonia on Feedback Negativity in Major Depressive Disorder. Neuropsychologia, 53, 213-220.
https://doi.org/10.1016/j.neuropsychologia.2013.11.023
[39] MacNamara, A., Kotov, R., & Hajcak, G. (2016). Diagnostic and Symptom-Based Predictors of Emotional Processing in Generalized Anxiety Disorder and Major Depressive Disorder: An Event-Related Potential Study. Cognitive Therapy and Research, 40, 275-289.
https://doi.org/10.1007/s10608-015-9717-1
[40] Majid, P. O. (2011). Relationships between Cognitive Emotion Regulation Strategies with Depression and Anxiety. Open Journal of Psychiatry, 1, 106-109.
https://doi.org/10.4236/ojpsych.2011.13015
[41] McCabe, C., Woffindale, C., Harmer, C. J., & Cowen, P. J. (2012). Neural Processing of Reward and Punishment in Young People at Increased Familial Risk of Depression. Biological Psychiatry, 72, 588-594.
https://doi.org/10.1016/j.biopsych.2012.04.034
[42] Michalowski, J. M., Melzig, C. A., Weike, A. I., Stockburger, J., Schupp, H. T., & Hamm, A. O. (2009). Brain Dynamics in Spider-Phobic Individuals Exposed to Phobia-Relevant and Other Emotional Stimuli. Emotion, 9, 306-315.
https://doi.org/10.1037/a0015550
[43] Morie, K. P., de Sanctis, P., Garavan, H., & Foxe, J. J. (2016). Regulating Task-Monitoring Systems in Response to Variable Reward Contingencies and Outcomes in Cocaine Addicts. Psycho-pharmacology, 233, 1105-1118.
https://doi.org/10.1007/s00213-015-4191-8
[44] Mulligan, E. M., Flynn, H., & Hajcak, G. (2019). Neural Response to Reward and Psychosocial Risk Factors Independently Predict Antenatal Depressive Symptoms. Biological Psychology, 147, Article ID: 107622.
https://doi.org/10.1016/j.biopsycho.2018.11.008
[45] Nelson, B. D., Infantolino, Z. P., Klein, D. N., Perlman, G., Kotov, R., & Hajcak, G. (2018). Time-Frequency Reward-Related Delta Prospectively Predicts the Development of Adolescent-Onset Depression. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3, 41-49.
https://doi.org/10.1016/j.bpsc.2017.07.005
[46] Nelson, B. D., Perlman, G., Klein, D. N., Kotov, R., & Hajcak, G. (2016). Blunted Neural Response to Rewards as a Prospective Predictor of the Development of Depression in Adolescent Girls. American Journal of Psychiatry, 173, 1223-1230.
https://doi.org/10.1176/appi.ajp.2016.15121524
[47] Olofsson, J. K., Nordin, S., Sequeira, H., & Polich, J. (2008). Affective Picture Processing: An Integrative Review of ERP Findings. Biological Psychology, 77, 247-265.
https://doi.org/10.1016/j.biopsycho.2007.11.006
[48] Pizzagalli, D. A., Iosifescu, D., Hallett, L. A., Ratner, K. G., & Fava, M. (2008). Reduced Hedonic Capacity in Major Depressive Disorder: Evidence from a Probabilistic Reward Task. Journal of Psychiatric Research, 43, 76-87.
https://doi.org/10.1016/j.jpsychires.2008.03.001
[49] Proudfit, G. H. (2015). The Reward Positivity: From Basic Research on Reward to a Biomarker for Depression. Psychophysiology, 52, 449-459.
https://doi.org/10.1111/psyp.12370
[50] Proudfit, G. H., Bress, J. N., Foti, D., Kujawa, A., & Klein, D. N. (2015). Depression and Event-Related Potentials: Emotional Disengagement and Reward Insensitivity. Current Opinion in Psychology, 4, 110-113.
https://doi.org/10.1016/j.copsyc.2014.12.018
[51] Schupp, H. T., Cuthbert, B. N., Bradley, M. M., Cacioppo, J. T., Ito, T., & Lang, P. J. (2000). Affective Picture Processing: The Late Positive Potential Is Modulated by Motivational Relevance. Psychophysiology, 37, 257-261.
https://doi.org/10.1111/1469-8986.3720257
[52] Sheppes, G., Suri, G., & Gross, J. J. (2015). Emotion Regulation and Psychopathology. Annual Review of Clinical Psychology, 11, 379-405.
https://doi.org/10.1146/annurev-clinpsy-032814-112739
[53] Thiruchselvam, R., Blechert, J., Sheppes, G., Rydstrom, A., & Gross, J. J. (2011). The Temporal Dynamics of Emotion Regulation: An EEG Study of Distraction and Reappraisal. Biological Psychology, 87, 84-92.
https://doi.org/10.1016/j.biopsycho.2011.02.009
[54] Treadway, M. T., & Pizzagalli, D. A. (2014). Imaging the Pathophysiology of Major Depressive Disorder-From Localist Models to Circuit-Based Analysis. Biology of Mood & Anxiety Disorders, 4, 5.
https://doi.org/10.1186/2045-5380-4-5
[55] Walentowska, W., Moors, A., Paul, K., & Pourtois, G. (2016). Goal Relevance Influences Performance Monitoring at the Level of the FRN and P3 Components. Psychophysiology, 53, 1020-1033.
https://doi.org/10.1111/psyp.12651
[56] Weinberg, A., Perlman, G., Kotov, R., & Hajcak, G. (2016). Depression and Reduced Neural Response to Emotional Images: Distinction from Anxiety, and Importance of Symptom Dimensions and Age of Onset. Journal of Abnormal Psychology, 125, 26-39.
https://doi.org/10.1037/abn0000118
[57] Weismüller, B., & Bellebaum, C. (2016). Expectancy Affects the Feedback Related Negativity (FRN) for Delayed Feedback in Probabilistic Learning. Psychophysiology, 53, 1739-1750.
https://doi.org/10.1111/psyp.12738
[58] Yau, Y. H. C., Potenza, M. N., Mayes, L. C., & Crowley, M. J. (2015). Blunted Feedback Processing during Risk-Taking in Adolescents with Features of Problematic Internet Use. Addictive Behaviors, 45, 156-163.
https://doi.org/10.1016/j.addbeh.2015.01.008