儿童阻塞性睡眠呼吸暂停综合征患儿血清IL-35和IL-37水平的研究
Serum IL-35 and IL-37 Levels in Pediatrics with Obstructive Sleep Apnea Syndrome
DOI: 10.12677/ACM.2021.111039, PDF, HTML, XML, 下载: 452  浏览: 713 
作者: 李栋才:深圳市龙岗耳鼻咽喉医院,深圳耳鼻咽喉研究所,广东 深圳;程涵蓉*, 魏永莉:深圳市人民医院呼吸疾病研究所;南方科技大学第一附属医院,暨南大学第二临床医学院,广东 深圳
关键词: 白细胞介素-35白细胞介素-37阻塞性睡眠呼吸暂停综合征炎症Interleukin-35 Interleukin-37 Obstructive Sleep Apnea Syndrome In?ammation
摘要: 目的:探讨儿童OSAS患者血清的IL-35、IL-37的水平。方法:46例新诊断的OSAS患者和35例非呼吸暂停对照者被纳入本研究。人口学资料,既往神经肌肉病、遗传代谢病及药物史,习惯通过标准化问卷获得。所有患者均接受多导睡眠图评估。OSAS组平均年龄6.8 ± 3.3(5~9.5)岁。OSAS组中位呼吸暂停低通气指数为12.5 (6.5~21),中位体重指数为20.5 (18~24.2)。采用ELISA法检测血清IL-35和IL-37水平。结果:OSAS患者血清IL-35和IL-37水平均明显低于健康人。随着OSAS疾病的程度加重,血清IL-35、IL-37水平进一步降低,其差异也具有统计学意义。结论:本研究提示血清IL-35和IL-37可能是OSAS的新的生物标志物,提示调节这两种细胞因子的表达可能为OSAS的治疗提供新的可能靶点。
Abstract: Objective: The aim of the present study was to investigate the serum level of IL-35. IL-37 in patients with OSAS. Methods: 46 newly diagnosed pediatrics OSAS patients and 35 non-apneic controls were enrolled in this study. Demographic data, previous history of diseases including metabolic diseases and drugs, and habits were obtained by a standardized questionnaire. All patients underwent polysomnographic evaluation. The mean age was 6.8 ± 3.3 (5~9.5) years in the OSAS group. Median apnea-hypopnea index was 12.5 (6.5~21) and median body mass index was 20.5 (18~24.2) in the OSAS group. Cytokine levels in serum were determined using ELISA. Results: The results showed that serums IL-35 and IL-37 levels were significantly decreased in OSAS patients compared with healthy subjects. The cytokine levels correlated inversely with OSAS severity. Conclusion: The study showed that serums IL-35 and IL-37 might be potentially novel biomarkers for OSAS, suggesting that regulating the expression of the two cytokines may provide a new possible target for the treatment of OSAS.
文章引用:李栋才, 程涵蓉, 魏永莉. 儿童阻塞性睡眠呼吸暂停综合征患儿血清IL-35和IL-37水平的研究[J]. 临床医学进展, 2021, 11(1): 268-274. https://doi.org/10.12677/ACM.2021.111039

1. 引言

阻塞性睡眠呼吸暂停综合征(Obstructive sleep apnea syndrome, OSAS)是一种广泛的疾病,其特征是睡眠时反复出现完全或部分上气道阻塞,伴随动脉血氧饱和度下降和睡眠唤醒,导致白天过度嗜睡并引起其他白天症状 [1]。在儿童,OSAHS的病因是腺样体肥大,扁桃体肥大等方面的因素,并导致炎症和间歇性低氧所致 [2]。白细胞介素(IL-35)和IL-37是新近发现的免疫抑制细胞因子。IL-35属于IL-12家族,含有IL-12,IL-23和IL-27。它由EB病毒诱导基因3 (Ebi3)和p35 (IL-12a)两个亚基组成 [3]。在小鼠中,IL-35由Foxp3+CD4+CD25+调节性T细胞(Tregs)分泌,在实验性自身免疫性脑脊髓炎(EAE)中,IL-35和CD138+浆细胞诱导的调节性T细胞群 [4] 分泌。利用实验数据库挖掘和统计分析方法,Li等人报道IL-35在人体组织中不是组成型表达,但在炎症刺激下是可诱导的 [5]。IL-37又称IL-1F7,是IL-1家族的一个新成员,具有类似桶状结构的共同特征。IL-37B是五种变异体中最大的同工型,在人类多种正常组织和肿瘤中表达 [6]。最早在骨髓中发现,中性粒细胞是其合成的主要场所。主要表达于血细胞,呼吸道,胃肠道,以及皮肤角质形成细胞 [7]。在本研究中,我们旨在调查血浆IL-35和IL-37水平与OSAS严重程度之间的关系,该严重程度由呼吸暂停低通气指数(AHI)确定。

2. 资料与方法

2.1. 患者选择

我们前瞻性评估了2019年2月至2020年2月间在深圳市龙岗耳鼻喉医院睡眠医学中心就诊的患者。这项研究得到了深圳市龙岗耳鼻喉医院伦理委员会的批准,所有患者都签署书面知情同意书。46例新诊断的OSAS患儿和35例年龄匹配的非呼吸暂停对照者被纳入本研究。排除中枢性睡眠呼吸暂停、上气道阻力综合征、肺部疾病、甲状腺功能低下及糖尿病等内分泌疾病、遗传代谢病及神经肌肉病患者。记录年龄,性别,体重指数(BMI)等人口统计学资料。用Epworth嗜睡量表对每位患者进行嗜睡评定。

2.2. 多导睡眠图评估

通过计算机化系统(康迪Compumedics Grael)对所有患者进行全夜诊断性多导睡眠描记术(PSG),记录脑电图,眼电图,颏下肌电图(EMG),双侧胫骨前肌电图,心电图,通过电感容积描记法进行的胸壁和腹壁运动,通过鼻压传感器测量,并辅以口腔热敏电阻器,脉冲血氧计,根据美国睡眠医学学会的标准,多导睡眠描记记录在30秒内对睡眠,呼吸和氧合进行评分。儿童睡眠呼吸暂停 [8] 是一种常见的睡眠呼吸障碍性疾病,是指睡眠过程中频繁发生部分或全部上气道阻塞,口、鼻气流停止持续时间至少为2个呼吸周期以上,分为中枢性(central sleep apnea, CSA)、阻塞性(obstructive sleep apnea, OSA)和混合性三类,其中最常见的是阻塞性睡眠呼吸暂停低通气综合征(obstructive sleep apnea hypopnea syndrome, OSAHS),儿童OSAHS 是指口鼻气流停止或气流减少30%以上,但存在呼吸运动,引起呼吸暂停和通气不足持续时间至少为2个呼吸周期以上,伴有打鼾、睡眠结构紊乱,低通气事件伴有血氧饱和度下降3%以上,跟据AASM标准,AHI ≥ 1即诊断为儿童OSA。根据OSAS的严重程度分为AHI = 1~5的轻度OSAS组,AHI = 5~10的中度OSAS组和AHI ≥ 10的重度OSAS组 [9]。

2.3. IL-35和IL-37测定

在进行多导睡眠描记术后的第二天早晨抽取静脉血样本,在室温下以1500 × g离心20分钟,收集血清并在−80℃保存直,直到测定结果。用市售酶联免疫吸附试验(ELISA)试剂盒:IL-37 (Ab 213798),IL-35 (70-EK135-96)测定血清IL-35和IL-37。所有细胞因子测定均一式两份,并按照制造商的方案进行。

2.4. 统计分析

用GraphPad Prism 5.0 (GraphPad Software Inc., San Diego, CA, USA)和SPSS19.0 (SPSS Inc., Chicago, IL, USA)进行统计评价。数据以均值±标准误差(SEM)表示。用方差分析评价血清中细胞因子表达的差异。在所有试验中,P < 0.05被认为是显著的。

3. 结果

本研究纳入了46例OSAS患者和35名对照受试者。表1列出了这两个研究组的基线特征和临床发现:OSAS患者与对照之间的年龄和性别无差异。OSAS组为6.8 ± 3.3 (5~9.5)岁,对照组为6.6 ± 3.6 (5.5~9.5)岁。81例患者中有46例(男26例,女性20例)被分类为OSAS,35例(20例男性,15例女性)作为对照组。对照组为健康受试者,无睡眠呼吸暂停。OSAS组中,AHI中位数为12.5 (6.5~21),BMI中位数为20.5 (18~24.2)。根据AHI将患者分为轻度OSAS组(n = 10, 21.7%),中度OSAS组(n = 20, 43.5%)和重度OSAS组(n = 16, 34.8%)。

OSAS 患者血清IL-35,IL-37水平降低。OSAS患者血清IL-35和IL-37浓度与健康对照(HC)相比,其差异具有统计学意义(表2)。轻度OSAS与中度OSAS,轻度OSAS与重度OSAS,中度OSAS与重度OSAS之间,随着OSAS疾病的程度加重,血清IL-35,IL-37水平进一步降低,其差异也具有统计学意义(P < 0.05) (表2)。

4. 讨论

阻塞性睡眠呼吸暂停综合征(obstructive sleep apnea syndrome, OSAS)是指睡眠时出现上气道咽腔水平反复的塌陷为主要特征,主要表现为睡眠时打鼾并伴有呼吸暂停,夜间反复发生低氧血症、高碳酸血

Table 1. Comparison of OSAS and control group

表1. OSAS与对照组的比较

Table 2. Serum levels of IL-35 and IL-37 in OSAS and control groups

表2. OSAS与对照组血清IL-35和IL-37水平

各组之间IL-35水平比较,P < 0.05;各组之间IL-37水平比较,P < 0.05。

症和睡眠结构紊乱,可造成多脏器损害 [1] [10]。由于呼吸暂停引起反复发作的夜间低氧和高碳酸血症,可导致高血压、冠心病、心律失常、糖尿病等,而心、脑血管的合并症最为常见和严重,甚至出现夜间猝死。目前肥胖的发生率增加,因此,OSAS的发生率也随之升高。众所周知,多导睡眠图是其标准诊断,然而它具有一定的局限性,包括成本、有限可用性及需要患者的积极配合,因此炎症因子及代谢指标在评估OSAS并发症中起到了重要的作用 [11]。早期的预测因子为临床提供依据,早发现,早治疗,积极干预,提高患者的生活质量,减少发生不良事件具有非常重要的意义。

OSAS在儿童中表现为行为异常,注意力障碍,白天过度嗜睡、多动,严重者可引起肺心病,生长发育迟缓,对儿童的身体健康、智力发育和生长带来极大影响,严重威胁儿童健康。OSAHS的病因包括腺样体肥大,扁桃体肥大、鼻中隔偏曲、小下颌、鼻甲肥大、鼻息肉等解剖方面的因素,引起炎症因子TNF-a、IL-6、IL-10、CRP过度释放等相关,主要是间歇性低氧导致 [12] [13] [14]。

到目前为止,C反应蛋白(CRP)和肿瘤坏死因子等临床标志物已被报道与OSAS有关 [15] [16]。Mehra等人已经证明OSAS患者与对照组相比IL-6水平升高 [17]。虽然有一些有说服力的结果,但介体水平的升高被认为是OSAS患者缺氧和肥胖的继发性因素。Nural等人报道了持续气道正压(CPAP)治疗后血清CRP水平显著降低 [18]。在最近的一项研究中,作者发现在调整年龄、腰围和吸烟后,AHI和IL-6水平之间没有明显的相关性 [19]。Yokoe在Al的报告中也有类似的发现 [20]。除此之外,Vgontzas等人 [21] 发现OSAS患者的IL-6和TNF-a水平高于健康受试者。IL-37被认为具有转位到细胞核的功能,并能在细胞内外重新分布。IL-37向细胞内转移可能是血清中IL-37含量下降的原因。研究表明,血清IL-35和IL-37水平降低可能代表体内抗炎活性不足,并有望作为监测OSAS疾病严重程度的新生物标志物。在本研究中,我们首次证实OSAS患者血清IL-35和IL-37水平显著低于健康对照组,并且随着OSAS疾病的程度加重,血清IL-35,IL-37水平进一步降低,其差异也具有统计学意义。

IL-35和IL-37的作用机制目前尚不清楚。IL-35参与神经系统、消化系统、骨关节系统和呼吸系统的炎症性疾病。Zandian等人证明IL-35通过阻止自身侵袭性T细胞的发展而具有抑制脱髓鞘的作用 [22]。Kochetkova等人提示外源性IL-35可抑制CD4+T细胞,Th1和Th17细胞的活性,抑制胶原诱导性关节炎的炎症 [23]。同时,提示IL-35可以帮助呼吸系统从炎症中恢复 [24]。Wirtz等人最近证实IL-35能显著抑制Th1和Th17细胞的增殖,减少实验性结肠炎的发生,保护小肠免受免疫反应的影响 [25]。IL-35的一个亚单位Ebi3在EBV转化的B淋巴细胞和组织中广泛表达,如扁桃体和脾脏 [26]。Ebi3可负性调节IL-17,IL-22和Th17转录因子ROR T,发挥抗炎保护性免疫 [27]。IL-12亚单位p35可导致小鼠疱疹基质性角膜炎(HSK)的进展,与IL-12p40无关 [28]。IL-35的两个亚单位确实具有自身调节免疫和炎症过程的能力。当它们结合在一起形成异二聚体时,p35亚基可能起配体的作用,而另一个亚基EBI3可能主要发挥其免疫功能 [29]。到目前为止,IL-35的信号转导途径尚不清楚。同时,研究证实IL-35通过独特的受体链异源二聚体IL-12 R2和gp130或每条链的同源二聚体进行信号传递 [30]。通过IL-35受体的信号传导需要转录因子STAT1和STAT4,STAT1和STAT4形成独特的异源二聚体,结合到编码IL-12亚基p35和EBI3的基因启动子中的不同位点。IL-35可直接抑制Teff细胞增殖,将原始T细胞转化为产生IL-35的iTr35细胞,抑制Th17细胞的发育,并介导IL-10的产生。同样,IL-37是炎症、自身免疫和其他免疫学疾病的细胞因子。IL-37蛋白在类风湿性关节炎患者的滑膜细胞中高表达,但在健康人滑膜细胞中表达低水平 [31]。银屑病患者的皮损和克罗恩病皮损的巨噬细胞中IL-37的表达也显著增加 [27]。IL-37是作为前蛋白合成的,在刺激后,它被加工成成熟形式 [32]。脂多糖(LPS)与其他炎症刺激物和细胞因子一起激活caspase-1,被认为是负责IL-1家族前体成熟的主要裂解酶。IL-37具有抗菌,抗病毒,中和内毒素,抗肿瘤,免疫调节等广谱功能,对微生物具有普遍的杀灭作用。其作用机制主要是通过改变细菌细胞的通透性。它还具有提高IL-8等几种细胞因子的产生以扩大获得性免疫功能的能力 [33]。对小鼠模型的研究已经得出IL-37下调炎症的结果。TLR、肿瘤坏死因子(TNF)等细胞因子可诱导炎性细胞因子的产生。诺德等人报道IL-37减弱上述过程,从而发挥抗炎作用 [31]。

本研究存在潜在的局限性。第一,样本量相对较小。尽管有这样的发现,显然需要进行大规模的前瞻性研究来确定OSAS及其亚组的IL-35、IL-37水平。其次,我们的研究不包含CPAP治疗后的受试者的随访记录,应进一步研究IL-35和IL-37的作用机制,以使其在今后的研究中得到应用。

5. 结论

综上所述,对OSAS患者炎症和氧化应激状态的进一步研究将有助于全面、深入地认识OSAS的发病机制。尽管各种研究证实炎症因子及代谢指标有助于OSAS的严重性的预测,但更准确、更理想的指标有待于进一步发现及临床验证应用。炎症因子和阻塞性睡眠呼吸暂停低通气综合征严重程度的相关性,提出了可能的新的检验指标,为深入探讨OSAHS的发病机制、临床评估、预后及疗效评估提供一定的参考价值。

参考文献

[1] Taioufis, C., Thornopoulos, K., Dimitriadis, K., Anastasia, A., Dimitris, T., Christodoulos, S., et al. (2007) The Incremental Effect of Obstructive Sleep Apnoea Syndrome on Arterial Stiffness in Newly Diagnosed Essential Hypertensive Subjects. Journal of Hypertension, 26, 141-146.
https://doi.org/10.1097/HJH.0b013e32801092c1
[2] Bhushan, B., Guleria, R., Misra, A., Pandey, R.M., Luthra, K., Vikram, N.K., et al. (2009) Obstructive Sleep Apnoea Correlates with C-Reactive Protein in Obese Asian Indians. Nutrition, Metabolism and Cardiovascular Diseases, 19, 184-189.
https://doi.org/10.1016/j.numecd.2008.06.008
[3] Collison, L.W., Workman, C.J., Kuo, T.T., Boyd, K., Wang, Y., Vignali, K.M., et al. (2007) The Inhibitory Cytokine IL-35 Contributes to Regulatory T-Cell Function. Nature, 450, 566-569.
https://doi.org/10.1038/nature06306
[4] Chaturvedi, V., Collison, L.W., Guy, C.S., Workman, C.J. and Vignali, D.A.A. (2011) Cutting Edge: Human Regulatory T Cells Require IL-35 to Mediate Suppression and Infectious Tolerance. Journal of Immunology, 186, 6661-6666.
https://doi.org/10.4049/jimmunol.1100315
[5] Li, X., Mai, J., Virtue, A., Yin, Y., Gong, R., Sha, X., et al. (2012) IL-35 Is a Novel Responsive Anti-Inflammatory Cytokine—A New System of Categorizing Anti-Inflammatory Cytokines. PLoS ONE, 7, e33628.
https://doi.org/10.1371/journal.pone.0033628
[6] Lee, Y.K. and Mazmanian, S.K. (2010) Has the Microbiota Played a Critical Role in the Evolution of the Adaptive Immune System? Science, 330, 1768-1773.
https://doi.org/10.1126/science.1195568
[7] Chen, P. and Fang, S. (2004) The Expression of Human Antimicrobial Peptide LL-37 in the Human Nasal Mucosa. The American Journal of Rhinology, 18, 381-385.
https://doi.org/10.1177/194589240401800608
[8] Guilleminault, C., Tilkian, A. and Dement, W.C. (1976) The Sleep Apnea Syndromes. Annual Review of Medicine, 27, 465-484.
https://doi.org/10.1146/annurev.me.27.020176.002341
[9] Marcus, C.L., Brooks, L.J., Draper, K.A., Gozal, D., Halbower, A.C., Jones, J., et al. (2012) Diagnosis and Management of Childhood Obstructive Sleep Apnea Syndrome, Pediatrics, 130, 576-584.
https://doi.org/10.1542/peds.2012-1671
[10] 中华医学会呼吸病学分会睡眠呼吸障碍学组. 阻塞性睡眠呼吸暂停低通气合征诊治指南(2011年修订版)[J].中华结核和呼吸杂志, 2012, 35(1): 9-12.
[11] De Luca Canto, G., Pacheco-Pereira, C., Aydinoz, S., Major, P.W., Flores Mir, C. and Gozal, D. (2014) Biomarkers Associated with Obstructive Sleep Apnea: A Scoping Review. Sleep Medicine Reviews, 23, 28-45.
https://doi.org/10.1016/j.smrv.2014.11.004
[12] Katz, E.S. and D’Ambrosio, C.M. (2010) Pediatric Obstructive Sleep Apnea Syndrome. Clinics in Chest Medicine, 31, 221-234.
https://doi.org/10.1016/j.ccm.2010.02.002
[13] Farber, J.M. (2002) Clinical Practice Guideline: Diagnosis and Management of Childhood Obstructive Sleep Apnea Syndrome. Pediatrics, 110, 1255-1257.
https://doi.org/10.1542/peds.110.6.1255-a
[14] Ryan, S., Taylor, C.T. and McNicholas, W.T. (2009) Systemic Inflammation: A Key Factor in the Pathogenesis of Cardiovascular Complications in Obstructive Sleep Apnoea Syndrome. Thorax, 64, 631-636.
[15] Minoguchi, K., Tazaki, T., Yokoe, T., Minoguchi, H., Watanabe, Y., Yamamoto, M., et al. (2004) Elevated Production of Tumor Necrosis Factor-Alpha by Monocytes in Patients with Obstructive Sleep Apnea Syndrome. Chest, 126, 1473-1479.
https://doi.org/10.1378/chest.126.5.1473
[16] Lui, M.M., Lam, J.C., Mak, H.K., Xu, A., Ooi, C., Lam, D.C., et al. (2009) C-Reactive Protein Is Associated with Obstructive Sleep Apnea Independent of Visceral Obesity. Chest, 135, 950-956.
https://doi.org/10.1378/chest.08-1798
[17] Mehra, R., Storfer-Isser, A., Kirchner, H.L., Johnson, N., Jenny, N., Tracy, R.P., et al. (2006) Soluble Interleukin 6 Receptor: A Novel Marker of Moderate to Severe Sleep-Related Breathing Disorder. Archives of Internal Medicine, 166, 1725-1731.
https://doi.org/10.1001/archinte.166.16.1725
[18] Nural, S., Gunay, E., Halici, B., Celik, S. and Unlu, M. (2013) Inflammatory Processes and Effects of Continuous Positive Airway Pressure (CPAP) in Overlap Syndrome. Inflammation, 36, 66-74.
https://doi.org/10.1007/s10753-012-9520-z
[19] Svensson, M., Venge, P., Janson, C. and Lindberg, E. (2012) Relationship between Sleep-Disordered Breathing and Markers of Systemic Inflammation in Women from the General Population. Journal of Sleep Research, 21, 147-154.
https://doi.org/10.1111/j.1365-2869.2011.00946.x
[20] Yokoe, T., Minoguchi, K., Matsuo, H., Oda, N., Minoguchi, H., Yoshino, G., et al. (2003) Elevated Levels of C-Reactive Protein Andinterleukin-6 in Patients with Obstructive Sleep Apnea Syndrome Are Decreased by Nasal Continuous Positive Airway Pressure. Circulation, 107, 1129-1134.
https://doi.org/10.1161/01.CIR.0000052627.99976.18
[21] Vgontzas, A.N., Papanicolaou, D.A., Bixler, E.O., Kales, A., Tyson, K. and Chrousos, G.P. (1997) Elevation of Plasma Cytokines in Disorders of Excessive Daytime Sleepiness: Role of Sleep Disturbance and Obesity. The Journal of Clinical Endocrinology and Metabolism, 82, 1313-1316.
https://doi.org/10.1210/jcem.82.5.3950
[22] Zandian, M., Mott, K.R., Allen, S.J., Dumitrascu, O., Kuo, J.Z. and Ghiasi, H. (2011) Use of Cytokine Immunotherapy to Block CNS Demyelination Induced by a Recombinant HSV-1 Expressing IL-2. Gene Therapy, 18, 734-742.
https://doi.org/10.1038/gt.2011.32
[23] Kochetkova, I., Golden, S., Holderness, K., Callis, G. and Pascual, D.W. (2010) IL-35 Stimulation of CD39+ Regulatory T Cells Confers Protection against Collagen II-Induced Arthritis via the Production of IL-10. Journal of Immunology, 184, 7144-7153.
https://doi.org/10.4049/jimmunol.0902739
[24] Whitehead, G.S., Wilson, R.H., Nakano, K., Burch, L.H., Nakano, H. and Cook, D.N. (2012) IL-35 Production by Inducible Costimulator (ICOS)-Positive Regulatory T Cells Reverses Established IL-17-Dependent Allergic Airways Disease. Journal of Allergy and Clinical Immunology, 129, 207-215.E5.
https://doi.org/10.1016/j.jaci.2011.08.009
[25] Wirtz, S., Billmeier, U., McHedlidze, T., Blumberg, R.S. and Neurath, M.F. (2011) Interleukin-35 Mediates Mucosal Immune Responses That Protect against T-Cell-Dependent Colitis. Gastroenterology, 141, 1875-1886.
https://doi.org/10.1053/j.gastro.2011.07.040
[26] Devergne, O., Birkenbach, M. and Kieff, E. (1997) Epstein-Barr Virus-Induced Gene 3 and the p35 Subunit of Interleukin 12 form a Novel Heterodimeric Hematopoietin. Proceedings of the National Academy of Sciences of the United States of America, 94, 12041-12046.
https://doi.org/10.1073/pnas.94.22.12041
[27] Yang, J., Yang, M., Htut, T.M., Ouyang, X., Hanidu, A., Li, X., et al. (2008) Epstein-Barr Virus-Induced Gene 3 Negatively Regulates IL-17, IL-22 and ROR𝛾t. European Journal of Immunology, 38, 1204-1214.
https://doi.org/10.1002/eji.200838145
[28] Frank, G.M., Divito, S.J., Maker, D.M., Xu, M. and Hendricks, R.L. (2010) A Novel P40-Independent Function of IL-12P35 Is Required for Progression and Maintenance of Herpes Stromal Keratitis. Investigative Ophthalmology and Visual Science, 51, 3591-3598.
https://doi.org/10.1167/iovs.09-4368
[29] Ye, S., Wu, J., Zhou, L., Lv, Z., Xie, H. and Zheng, S. (2013) Interleukin-35: The Future of Hyperimmune-Related Diseases? Journal of Interferon and Cytokine Research, 33, 285-291.
https://doi.org/10.1089/jir.2012.0086
[30] Collison, L.W., Delgoffe, G.M., Guy, C.S., Vignali, K.M., Chaturvedi, V., Fairweather, D.L., et al. (2012) The Composition and Signaling of the IL-35 Receptor Are Unconventional. Nature Immunology, 13, 290-299.
https://doi.org/10.1038/ni.2227
[31] Nold, M.F., Nold-Petry, C.A., Zepp, J.A., Palmer, B.E., Bufler, P. and Dinarello, C.A. (2010) IL-37 Is a Fundamental Inhibitor of Innate Immunity. Nature Immunology, 11, 1014-1022.
https://doi.org/10.1038/ni.1944
[32] Boraschi, D., Lucchesi, D., Hainzl, S., Leitner, M., Maier, E., Mangelberger, D., et al. (2011) IL-37: A New Anti-Inflammatory Cytokine of the IL-1 Family. European Cytokine Network, 22, 127-147.
https://www.jle.com/10.1684/ecn.2011.0288
[33] de Smet, K. and Contreras, R. (2005) Human Antimicrobial Peptides: Defensins, Cathelicidins and Histatins. Biotechnology Letters, 27, 1337-1347.
https://doi.org/10.1007/s10529-005-0936-5