第一性原理研究单个Si原子掺杂石墨烯结构的电子性质
Electronic Properties of Single Si At-om-Doped Graphene: A First Principle Study
DOI: 10.12677/CMP.2017.62004, PDF, HTML, XML, 下载: 1,972  浏览: 4,245 
作者: 宋仁刚, 李文亮, 刘香全, 徐岩*:山东科技大学,电子通信与物理学院
关键词: 石墨烯掺杂第一性原理杂化电子性质Graphene Doping First Principles Hybridization Electronic Properties
摘要: 本文利用第一性原理对单个Si原子掺杂石墨烯结构的电子性质进行了计算模拟研究。结果表明,该体系的原子间杂化成键状态倾向于sp2-sp3混合杂化,原子排列出现了褶皱,石墨烯原有的空间反演对称性破缺,使得石墨烯能带结构中的狄拉克锥的零能隙打开。通过投影能带发现,掺杂Si原子在狄拉克锥附近的贡献较小,其主要影响是改变体系的杂化成键状态使体系几何结构发生改变,进而导致体系的电子性质发生变化。
Abstract: By using first principle calculations, we have investigated electronic properties of single Si atom doped graphene. The results showed that the atoms in this structure tend to bond in a sp2-sp3 mix-ing hybridization, and the atomic arrangement of this structure is predicted to be buckling. Hence, the inversion-symmetry of the whole system is broken, which results in opening a gap in the Dirac cone of the band structure for graphene. Through the analysis of projected band structure, we found that the doping Si atom is of little contribution around the Dirac cone. We predicted that the impact of the Si atom is to induce the change of hybridization states in this structure and then leads to the change of electronic properties.
文章引用:宋仁刚, 李文亮, 刘香全, 徐岩. 第一性原理研究单个Si原子掺杂石墨烯结构的电子性质[J]. 凝聚态物理学进展, 2017, 6(2): 27-32. https://doi.org/10.12677/CMP.2017.62004

参考文献

[1] Geim, A.K. and Novoselov, K.S. (2007) The Rise of Graphene. Nature Materials, 6, 183-191.
https://doi.org/10.1038/nmat1849
[2] Neto, A.H.C. (2007) The Electronic Properties of Graphene. Vacuum, 244, 4106-4111.
https://doi.org/10.1017/CBO9781139031080
[3] Katsnelson, M.I. (2012) Graphene: Carbon in Two Dimensions. Cambridge University Press, Cambridge.
[4] Guzmán-Verri, G.G. and Voon, L.C.L.Y. (2011) Electronic Structure of Silicon-Based Nanostruc-tures. Physical Review B, 76, 12825-12834.
[5] Cahangirov, S., Topsakal, M., Aktürk, E., et al. (2009) Two-and One-Dimensional Honeycomb Structures of Silicon and Germanium. Physical Review Letters, 102, Article ID: 236804.
https://doi.org/10.1103/physrevlett.102.236804
[6] Houssa, M., Pourtois, G., Afanasev, V.V., et al. (2010) Can Silicon Behave Like Graphene? A First-Principles Study. Applied Physics Letters, 97, Article ID: 12106.
https://doi.org/10.1063/1.3489937
[7] Liu, C.C., Jiang, H. and Yao, Y. (2011) Low-Energy Effective Hamiltonian Involving Spin-Orbit Coupling in Silicene and Two-Dimensional Germanium and Tin. Physical Review B, 84, 4193-4198.
https://doi.org/10.1103/PhysRevB.84.195430
[8] Perdew, J.P., Burke, K. and Ernzerhof, M. (1996) Generalized Gradient Ap-proximation Made Simple. Physical Review Letters, 78, Article ID: 3865.
https://doi.org/10.1103/physrevlett.77.3865
[9] Kresse, G. and Joubert, D. (1999) From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Physical Review B, 59, 1758-1775.
https://doi.org/10.1103/PhysRevB.59.1758
[10] Kresse, G. and Furthmüller, J. (1996) Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Computational Materials Science, 6, 15-50.
https://doi.org/10.1016/0927-0256(96)00008-0
[11] Zhou, W., Kapetanakis, M.D., Prange, M.P., et al. (2012) Direct Determina-tion of the Chemical Bonding of Individual Impurities in Graphene. Physical Review Letters, 109, Article ID: 206803.
https://doi.org/10.1103/physrevlett.109.206803
[12] Houssa, M., Dimoulas, A. and Molle, A. (2015) Silicene: A Review of Re-cent Experimental and Theoretical Investigations. Journal of Physics Condensed Matter, 27, Article ID: 253002.
https://doi.org/10.1088/0953-8984/27/25/253002
[13] Chen, L., Li, H., Feng, B., et al. (2013) Spontaneous Symmetry Breaking and Dynamic Phase Transition Inmonolayer Silicene. Physical Review Letters, 110, Article ID: 085504.
[14] Lin, C.L., Arafune, R., Kawahara, K., et al. (2013) Substrate-Induced Symmetry Breaking in Silicene. Physical Review Letters, 110, Article ID: 076801.
https://doi.org/10.1103/physrevlett.110.076801
[15] Efros, A.L., Van Lien, N. and Shklovskii, B.I. (2001) Impurity Band Struc-ture in Lightly Doped Semiconductors. Journal of Physics C Solid State Physics, 12, 1869.
https://doi.org/10.1088/0022-3719/12/10/018