不同固结程度海洋软土动强度试验研究
Experimental Study on Dynamic Strength of Marine Soft Soil with Different Consolidation Degree
DOI: 10.12677/HJCE.2017.62013, PDF, HTML, XML, 下载: 1,462  浏览: 2,739 
作者: 李树斌*, 宋金良:广州大学土木工程学院,广东 广州
关键词: 海洋软土超固结动强度动三轴Marine Soft Soil Over-Consolidation Dynamic Strength Dynamic Triaxial Test
摘要: 为研究循环应力比和频率对不同超固结比的海洋软土动强度的影响,本文对珠江海洋软土进行室内动三轴试验,并对试验结果进行拟合分析。试验结果表明:总应变随着频率和超固结比的增大而减小,随着循环应力比的增大而增大;软化指数随着振次、循环荷载的增大而减小,随着频率的增大而增大;对软化曲线和动强度曲线进行回归分析,分别得到关于超固结比的软化系数和动强度经验公式。
Abstract: In order to clarify the effects of cyclic stress ratio and frequency on dynamic strength of soft ma-rine soil, a series of dynamic triaxial tests are performed. The test results show that: 1) the total strain decreases along with the increase of the frequency and over-consolidation ratio, but in-creases along with the increase of the cyclic stress ratio; 2) the softening index decreases along with the increase of vibration times and cyclic loading, but increases along with the increase of the frequency; 3) by conducting regression analysis on the softening curve and dynamic strength curve, we have obtained the softening coefficient on over-consolidation ratio and the empirical equation of dynamic strength.
文章引用:李树斌, 宋金良. 不同固结程度海洋软土动强度试验研究[J]. 土木工程, 2017, 6(2): 110-127. https://doi.org/10.12677/HJCE.2017.62013

参考文献

[1] 聂影, 栾茂田, 唐小微, 等. 超固结黏土单调和耦合循环的剪切特性研究[J]. 岩土力学, 2009, 30(9): 2616-2622.
[2] 孙磊, 王军, 孙宏磊, 等. 循环围压对超固结黏土变形特性影响试验研究[J]. 岩石力学与工程学报, 2015(3): 594- 600.
[3] Mayne, P.W. (1988) Determining OCR in Clays from Laboratory Strength. Journal of Geotechniccal, 114, 22-31.
[4] Azzouz, A.S., Malek, A.M. and Baligh, M.M. (1989) Cyclic Behavior of Clays in Undrained Simple Shear. American Society of Civil Engineers, 115, 637-657.
https://doi.org/10.1061/(asce)0733-9410(1989)115:5(637)
[5] Imai, G. and Xie, C. (1991) Endochronic Modeling for Cyclic Behavior of Overconsolidated Clays. Soils & Foundations, 31, 103-114.
https://doi.org/10.3208/sandf1972.31.4_103
[6] Jiang, M.M., Cai, Z.Y., Cao, P., et al. (2010) Effect of Cyclic Loading Frequency on Dynamic Properties of Marine Clay. Soil Dynamics and Earthquake Engineering (GSP 201). Proceedings of the 2010 Geo Shanghai International Conference, 340-346.
https://doi.org/10.1061/41102(375)29
[7] Larew, H.G. and Leonards, G.A. (1962) A Repeated Load Strength Criterion. Highway Research Board Proceedings.
[8] Idriss, I.M., Dobry, R. and Singh, R.D. (1978) Nonlinear Behavior of Soft Clays during Cyclic Loading. Journal of the Geotechnical Engineering Division, 104, 1427-1447.
[9] Yasuhara, Y., Hyde, A.F.L., Toyata, N., et al. (1998) Cyclic Stiffness of Plastic Silt with an Initial Dranied Shear Stress. Proceedings of Geotechnique Symposium in Print (SIP) on Prefailure Deformation Behavior of Geomterials, London, 371-382.
[10] 王军, 蔡袁强, 徐长节, 等. 循环荷载作用下饱和软黏土应变软化模型研究[J]. 岩石力学与工程学报, 2007, 26(8): 1713-1719.