气候变化对森林生态系统影响英文文献综述
Review of English Literatures on Climate Change and Forests
DOI: 10.12677/WJF.2016.54011, PDF, HTML, XML, 下载: 2,846  浏览: 8,761  科研立项经费支持
作者: 李凤敏, 杜国明*:华南农业大学人文与法学学院,广东 广州;周 伟:华南农业大学经济管理学院,广东 广州
关键词: 气候变化森林英文文献Climate Change Forest English Papers
摘要: 通过收集最近20年间的1743篇英文文献,从文献概述、研究目的、研究方法、研究结论等几方面全面梳理了全球气候变化对森林生态系统影响的国际研究进展,基于气候变化对森林、森林管理、森林固碳影响等几个视角,考察了学者们的关注热点和重点、不同研究思路和研究方法、研究结论的差异,最终基于对比分析,提出相关研究的未来发展趋势和方向。
Abstract: By collecting 1743 English papers in the last 20 years, the paper sorts out the international re-search progress of influence on global climate change and forest ecosystems from literature overview, purpose, research methods, research findings and other aspects of literatures. Based on several perspectives of forests, forest management and forest carbon sequestration, the paper studies research points, different research ideas and methods and differences research findings. Ultimately, the future research directions on English literatures on climate change and forests are proposed according to the study.
文章引用:李凤敏, 杜国明, 周伟. 气候变化对森林生态系统影响英文文献综述[J]. 林业世界, 2016, 5(4): 87-101. http://dx.doi.org/10.12677/WJF.2016.54011

参考文献

[1] Bush, M.B., Silman, M.R. and Urrego, D.H. (2004) 48,000 Years of Climate and Forest Change in a Biodiversity Hot Spot. Science, 303, 827-831. http://dx.doi.org/10.1126/science.1090795
[2] Pennington, R.T., Lavin, M., Prado, D.E., et al. (2004) Historical Climate Change and Speciation: Neotropical Seasonally Dry Forest Plants Show Patterns of Both Tertiary and Quaternary Diversification. Philosophical Transactions on the Royal Society, 359, 515-537. http://dx.doi.org/10.1098/rstb.2003.1435
[3] Zumbrunnen, T., Bugmann, H., Conedera, M. and Bürgi, M. (2006) Linking Forest Fire Regimes and Climate—A Historical Analysis in a Dry Inner Alpine Valley. Ecosystems, 12, 73-86.
[4] Haxeltine, A. and Colin Prentic, I. (1996) BIOME3: An Equilibrium Terrestrial Biosphere Model Based on Ecophysiological Constraints, Resource Availability, and Competition among Plant Functional Types. Global Biogeochemical Cycles, 10, 693-709. http://dx.doi.org/10.1029/96GB02344
[5] Cowling, S.A. and Field, C.B. (2003) Environmental Control of Leaf Area Production: Implications for Vegetation and Land-Surface Modeling. Global Biogeochemical Cycles, 17, 7-1-7-14. http://dx.doi.org/10.1029/2002GB001915
[6] Cramer, W., Kicklighter, D.W., Bondeau, A., et al. (1999) Comparing Global Models of Terrestrial Net Primary Productivity (NPP): Overview and Key Results. Global Change Biology, 5, 1-15. http://dx.doi.org/10.1046/j.1365-2486.1999.00009.x
[7] Rathgeber, C., Nicault, A., Guiot, J., Keller, T., Guibal, F. and Roche, P. (2000) Simulated Responses of Pinus halepensis Forest Productivity to climatic Change and CO2 Increase Using a Statistical Model. Global and Planetary Change, 26, 405-421. http://dx.doi.org/10.1016/S0921-8181(00)00053-9
[8] Ravindranath, N.H., Joshi, N.V., Sukumar, R. and Saxena, A. (2006) Impact of Climate Change on Forests in India. Current Science, 90, 354-361.
[9] Neilson, R.P. and Running, S.W. (1996) Global Dynamic Vegetation Modelling: Coupling Biogeochemistry and Biogeography Models. In: Walker, B.H. and Steffen, W.L., Eds., Global Change and Terrestrial Ecosystems, Cambridge University Press, Cambridge, 451-465.
[10] Peng, C.H. and Apps, M.J. (1999) Modelling the Response of Net Primary Productivity (NPP) of Boreal Forest Ecosystems to Changes in Climate and Fire Disturbance Regimes. Ecological Modelling, 122, 175-193. http://dx.doi.org/10.1016/S0304-3800(99)00137-4
[11] Chiesi, M., Maselli, F., Moriondo, M., et al. (2007) Application of BIOME-BGC to Simulate Mediterranean Forest Processes. Ecological Modelling, 206, 179-190. http://dx.doi.org/10.1016/j.ecolmodel.2007.03.032
[12] Band, L.E., Patterson, P., Nemani, R. and Running, S.W. (1993) Forest Ecosystem Processes at the Watershed Scale: Incorporating Hillslope Hydrology. Agricultural and Forest Meteorology, 36, 93-126. http://dx.doi.org/10.1016/0168-1923(93)90024-C
[13] White, M.A., Thornton, P.E., Running, S.W., et al. (2000) Parameterization and Sensitivity Analysis of the BIOME- BGC Terrestrial Ecosystem Model: Net Primary Production Controls. American Meteorology Society, 4, 1-85.
[14] Stosks, B.J., Fosberg, M.A., Lynham, T.J., et al. (1998) Climate Change and Forest Fire Potential in Russianand Canadian Boreal Forests. Climatic Change, 38, 1-13. http://dx.doi.org/10.1023/A:1005306001055
[15] Sabate, S., Graciaa, C.A. and Sanchez, A. (2002) Likely Effects of Climate Change on Growth of Quercus ilex, Pinus halepensis, Pinus pinaster, Pinus sylvestris and Fagus sylvatica Forests in the Mediterranean Region. Forest Ecology and Management, 162, 23-37. http://dx.doi.org/10.1016/S0378-1127(02)00048-8
[16] Honnay, O., Verheyen, K., Butaye, J., et al. (2002) Possible Effects of Habitat Fragmentation and Climate Change on the Range of Forest Plant Species. Ecology Letters, 5, 525-530. http://dx.doi.org/10.1046/j.1461-0248.2002.00346.x
[17] Scheller, R.M. and Mladenoff, D.J. (2005) A Spatially Interactive Simulation of Climate Change, Harvesting, Wind, and Tree Species Migration and Projected Changes to Forest Composition and Biomass in Northern Wisconsin, USA. Global Change Biology, 11, 307-321. http://dx.doi.org/10.1111/j.1365-2486.2005.00906.x
[18] Flannigan, M.D., Amiro, B.D., Logan, K.A., Stocks, B.J. and Wotton, B.M. (2006) Forest Fires and Climate Change in the 21ST Century. Mitigation and Adaptation Strategies for Global Change, 11, 847-859. http://dx.doi.org/10.1007/s11027-005-9020-7
[19] Soja, A.J., Tchebakova, N.M., French, N.H.F., et al. (2007) Climate-Induced Boreal Forest Change: Predictions versus Current Observations. Global and Planetary Change, 56, 274-296. http://dx.doi.org/10.1016/j.gloplacha.2006.07.028
[20] Wotton, B.M., Nock, C.A. and Flannigan, M.D. (2010) Forest Fire Occurrence and Climate Change in Canada. International Journal of Wildland Fire, 19, 253-271. http://dx.doi.org/10.1071/WF09002
[21] Wotton, B.M., Martell, D.L. and Logan, K.A. (2003) Climate Changeand People-Caused Forest Fire Occurrence in Ontario. Climatic Change, 60, 275-295. http://dx.doi.org/10.1023/A:1026075919710
[22] Ravindranath, N.H., Joshi, N.V., Sukumar, R., et al. (2006) Impact of Climate Change on Forests in India. Current Science, 90, 354-361.
[23] Sykes, M.T., Prentice, C. and Cramer, W. (1996) A Bioclimatic Model for the Potential Distributions of North European Tree Species under Presentand Future Climates. Journal of Biogeography, 23, 203-233.
[24] Box, R.C. (1999) Running Government like a BusinessImplications for Public Administration Theory and Practice. The American Review of Public Administration, 29, 19-43. http://dx.doi.org/10.1177/02750749922064256
[25] Alig, R.J., Adams, D.M. and McCarl, B.A. (2002) Projecting Impacts of Global Climate Change on the US Forest and Agriculture Sectors and Carbon Budgets. Forest Ecology and Management, 169, 3-14. http://dx.doi.org/10.1016/S0378-1127(02)00290-6
[26] Mccoy, V.M. and BurnArctic, C.R. (2005) Potential Alteration by Climate Change of the Forest-Fire Regime in the Boreal Forest of Central Yukon Territory. Arctic, 58, 276-285.
[27] Kokorin, A.O., Lelakin, A.L. and Nazarov, I.M. (1996) Influence of Climate Changes on Carbon Cycle in the Russian Forests. Prognostic Modeling of CO2 Exchange with the Atmosphere. Physics and Chemistry of the Earth, 21, 219- 223. http://dx.doi.org/10.1016/S0079-1946(97)85588-7
[28] Karjalainen, T., Pussinen, A., Liski, J., et al. (2003) Scenario Analysis of the Impacts of Forest Management and Climate Change on the European Forest Sector Carbon Budget. Forest Policy and Economics, 5, 141-155. http://dx.doi.org/10.1016/S1389-9341(03)00021-2
[29] Hanewinkel, M., Cullmann, D.A., Schelhaas, M.-J., et al. (2013) Climate Change May Cause Severe Loss in the Economic Value of European Forest Land. Nature Climate Change, 3, 203-207. http://dx.doi.org/10.1038/nclimate1687
[30] Hilbert, D.W., Ostendorf, B. and Hopkins, M.S. (2001) Sensitivity of Tropical Forests to Climate Change in the Humid Tropics of North Queensland. Austral Ecology, 26, 590-603. http://dx.doi.org/10.1046/j.1442-9993.2001.01137.x
[31] Churkina, G. and Running, S.W. (1998) Contrasting Climatic Controls on the Estimated Productivity of Global Terrestrial Biomes. Ecosystems, 1, 206-215. http://dx.doi.org/10.1007/s100219900016
[32] Schulze, W.S., Lubatkin, M.H. and Dino, R.N. (2002) Altruism, Agency, and the Competitiveness of Family Firms. Managerial and Decision Economics, 23, 247-259. http://dx.doi.org/10.1002/mde.1064
[33] Nemani, R.R., Keeling, C.D., Hashimoto, H., et al. (2003) Climate-Driven Increases in Global Terrestrial Net Primary Production from 1982 to 1999. Science, 300, 1560-1563. http://dx.doi.org/10.1126/science.1082750
[34] Running, S.W., Nemani, R.R., Heinsch, F.A., et al. (2004) Impacts of Climate Change on Natural Forest Productivity—Evidence since the Middle of the 20th Century. Global Change Biology, 12, 862-882.
[35] Keyser, A.R., Kimball, J.S., Nemani, R.R. and Running, S.W. (2000) Simulating the Effects of Climate Change on the Carbon Balance of North American High-Latitude Forests. Global Change Biology, 6, 185-195. http://dx.doi.org/10.1046/j.1365-2486.2000.06020.x
[36] Schulze, E.-D., Wirth, C. and Heimann, M. (2006) Managing Forests after Kyoto. Science, 289, 2058-2061. http://dx.doi.org/10.1126/science.289.5487.2058
[37] Payette, S., Fortin, M. and Gamache, I. (2001) The Subarctic Forest-Tundra: The Structure of a Biome in a Changing Climate. BioScience, 51, 709-718. http://dx.doi.org/10.1641/0006-3568(2001)051[0709:TSFTTS]2.0.CO;2
[38] Fang, J., Lin, Y., Zhu, S. and Chen, X. (2003) Probabilistic Teleportation of a Three-Particle State via Three Pairs of Entangled Particles. Physical Review A, 67, 43-48. http://dx.doi.org/10.1103/PhysRevA.67.014305
[39] Boisvenue, C. and Running, S.W. (2010) Simulations Show Decreasing Carbon Stocks and Potential for Carbon Emissions in Rocky Mountain Forests over the Next Century. Ecological Applications, 20, 1302-1319. http://dx.doi.org/10.1890/09-0504.1
[40] Ren, W., Tian, H., Tao, B., et al. (2011) Impacts of Tropospheric Ozone and Climate Change on Net Primary Productivity and Net Carbon Exchange of China’s Forest Ecosystems. Global Ecology and Biogeography, 20, 391-406. http://dx.doi.org/10.1111/j.1466-8238.2010.00606.x
[41] Reyer, C., Lasch-Born, P., Suckow, F., et al. (2014) Projections of Regional Changes in Forest Net Primary Productivity for Different Tree Species in Europe Driven by Climate Change and Carbon Dioxide. Annals of Forest Science, 71, 211-225. http://dx.doi.org/10.1007/s13595-013-0306-8
[42] Dale, V.H., Joyce, L.A., McNulty, S. and Neilson, R.P. (2000) The Interplay between Climate Change, Forests, and Disturbances. The Science of the Total Environment, 262, 201-204. http://dx.doi.org/10.1016/S0048-9697(00)00522-2
[43] Jan, W.A. and Volney, R.A. (2000) Fleming. Climate Change and Impacts of Boreal Forest Insects. Agriculture, Ecosystems and Environment, 82, 283-294. http://dx.doi.org/10.1016/S0167-8809(00)00232-2
[44] Peng, C. and Apps, M.J. (1998) Modelling the Response of Net Primary Productivity (NPP) of Boreal Forest Ecosystems to Changes in Climate and Fire Disturbance Regimes. Ecological Modelling, 122, 175-193. http://dx.doi.org/10.1016/S0304-3800(99)00137-4
[45] Loope, L.L. and Giambelluca, T. (1998) Vulnerability of island Tropical Montane Cloud Forests to Climate Change, with Special Reference to East Maui, Hawaii. Climatic Change, 39, 503-517. http://dx.doi.org/10.1023/A:1005372118420
[46] Rojas-Soto, O.R., Sosa, V. and Ornelas, J.F. (2012) Forecasting Cloud Forest in Eastern and Southern Mexico: Conservation Insights under Future Climate Change Scenarios. Biodiversity and Conservation, 21, 2671-2690. http://dx.doi.org/10.1007/s10531-012-0327-x
[47] Miles, L., Grainger, A. and Phillips, O. (2004) The Impact of Global Climate Change on Tropical Forest Biodiversity in Amazonia. Global Ecology and Biogeography, 13, 553-565. http://dx.doi.org/10.1111/j.1466-822X.2004.00105.x
[48] Ni, J. (2002) Effects of Climate Change on Carbon Storage in Boreal Forests of China: A Local Perspective. Climatic Change, 55, 61-75. http://dx.doi.org/10.1023/A:1020291220673
[49] Loehle, C. (2000) Forest Ecotone Response to Climate Change: Sensitivity to Temperature Response Functional Forms. Canadian Journal of Forest Research, 30, 1632-1645. http://dx.doi.org/10.1139/x00-088
[50] Hamann, A., Gylander, T. and Chen, P. (2006) Developing Seed Ones and Transfer Guidelines with Multivariate Regression Trees. Tree Genetics & Genomes, 7, 399-408. http://dx.doi.org/10.1007/s11295-010-0341-7
[51] Sykes, M.T. and Colin Prentice, I. (1996) Climate Change, Tree Species Distributions and Forest Dynamics: A Case Study in the Mixed Conifer/Northern Hardwoods Zone of Northern Europe. Climatic Change, 34, 161-177. http://dx.doi.org/10.1007/BF00224628
[52] Loustau, D., Bosc, A., Colin, A., et al. (2006) Modeling Climate Change Effects on the Potential Production of French Plains Forests at the Sub-Regional Level. Tree Physiology, 25, 813-823. http://dx.doi.org/10.1093/treephys/25.7.813
[53] Coley, P.D. (1998) Possible Effects of Climate Change on Plant/Herbivore Interactions in Moist Tropical Forests. Climatic Change, 39, 315-332. http://dx.doi.org/10.1007/978-94-017-2730-3_15
[54] Corlett, R.T. and Lafrankie Jr., J.V. (1998) Potential Impacts of Climate Change on Tropical Asian Forests through an Influence on Phenology. In: Markham, A., Ed., Potential Impacts of Climate Change on Tropical Forest Ecosystems, Springer, Berlin, 299-313. http://dx.doi.org/10.1007/978-94-017-2730-3_14
[55] Condit, R., Hubbell, S.P. and Foster, R.B. (1996) Impacts of Climate Change on Natural Forest Productivity—Evidence since the Middle of the 20th Century. Journal of Tropical Ecology, 12, 231-256. http://dx.doi.org/10.1017/S0266467400009433
[56] Foster, P. (2001) The Potential Negative Impacts of Global Climate Change on Tropical Montane Cloud Forests. Earth-Science Reviews, 55, 73-106. http://dx.doi.org/10.1016/S0012-8252(01)00056-3
[57] Scheller, R.M. and Mladenoff, D.J. (2005) A Spatially Interactive Simulation of Climate Change, Harvesting, Wind, and Tree Species Migration and Projected Changes to Forest Composition and Biomass in Northern Wisconsin, USA. Global Change Biology, 11, 307-321. http://dx.doi.org/10.1111/j.1365-2486.2005.00906.x
[58] Tommervik, H., Johansen, B., Tombre, I., et al. (2004) Vegetation Changes in the Nordic Mountain Birch Forest: The Influence of Grazing and Climate Change. Arctic, Antarctic, and Alpine Research, 36, 323-332. http://dx.doi.org/10.1657/1523-0430(2004)036[0323:VCITNM]2.0.CO;2
[59] Louis, R. and Prasad, A.M. (2001) Potential Changes in Tree Species Richness and Forest Community Types following Climate Change. Ecosystems, 4, 186-199. http://dx.doi.org/10.1007/s10021-001-0003-6
[60] Hemp, A. (2005) Climate Change-Driven Forest Fires Marginalize the Impact of Ice Cap Wasting on Kilimanjaro. Global Change Biology, 11, 1013-1023. http://dx.doi.org/10.1111/j.1365-2486.2005.00968.x
[61] He, H.S., Mladenoff, D.J. and Gustafson, E.J. (2002) Study of Landscape Change under Forest Harvesting and Climate Warming-Induced Fire Disturbance. Forest Ecology and Management, 55, 257-270. http://dx.doi.org/10.1016/S0378-1127(01)00563-1
[62] Flannigan, M., Stocks, B., Turetsky, M. and Wotton, M. (2009) Impacts of Climate Change on Fire Activity and Fire Management in the Circumboreal Forest. Global Change Biology, 15, 549-560. http://dx.doi.org/10.1111/j.1365-2486.2008.01660.x
[63] Spring, D., Kennedy, J.O.S. and Nally, R.M. (2005) Optimal Management of a Forested Catchment Providing Timberand Carbon Sequestration Benefits: Climate Change Effects. Global Environmental Change, 15, 281-292. http://dx.doi.org/10.1016/j.gloenvcha.2005.04.002
[64] Alig, R., Adams, D., McCarl, B., Callaway, J.M. and Winnett, S. (1997) Assessing Effects of Mitigation Strategies for Global Climate Change with an Intertemporal Model of the US Forest and Agriculture Sectors. Environmental and Resource Economics, 9, 259-274. http://dx.doi.org/10.1007/BF02441399
[65] Lindner, M. (2000) Developing Adaptive Forest Management Strategies to Cope with Climate Change. Tree Physiology, 20, 299-307. http://dx.doi.org/10.1093/treephys/20.5-6.299
[66] Laurance, W.F. (1998) A Crisis in the Making: Responses of Amazonian Forests to Land Use and Climate Change. Tree, 13, 411-415. http://dx.doi.org/10.1016/s0169-5347(98)01433-5
[67] Bodin, P. and Wiman, B.L.B. (2007) The Usefulness of Stability Concepts in Forest Management When Coping with Increasing Climate Uncertainties. Forest Ecology and Management, 242, 541-552. http://dx.doi.org/10.1016/j.foreco.2007.01.066
[68] Hurteau, M.D., Hungate, B.A. and Koch, G.W. (2009) Accounting for Risk in Valuing Forest Carbon Offsets. Carbon Balance and Management, 4, 1-5. http://dx.doi.org/10.1186/1750-0680-4-1
[69] Canadell, J.G. and Raupach, M.R. (2008) Managing Forests for Climate Change Mitigation. Science, 320, 1456-1457. http://dx.doi.org/10.1126/science.1155458
[70] Dunn, A.L., Barford, C.C., Wofsy, S.C., et al. (2006) A Long-Term Record of Carbon Exchange in a Boreal Black Spruce Forest: Means, Responses to Interannual Variability, and Decadal Trends. Global Change Biology, 13, 577- 590. http://dx.doi.org/10.1111/j.1365-2486.2006.01221.x
[71] Lal, R. (2005) Forest Soils and Carbon Sequestration. Forest Ecology and Management, 220, 242-258. http://dx.doi.org/10.1016/j.foreco.2005.08.015
[72] Hashimoto, S., Ugawa, S., Nanko, K. and Shichi, K. (2012) The Total Amounts of Radioactively Contaminated Materials in Forests in Fukushima, Japan. Scientific Reports, 22, 416-420. http://dx.doi.org/10.1038/srep00416
[73] Shanin, V.N., Komarov, A.S., Mikhailov, A.V. and Bykhovets, S.S. (2011) Modelling Carbon and Nitrogen Dynamics in Forest Ecosystems of Central Russia under Different Climate Change Scenarios and Forest Management Regimes. Ecological Modelling, 222, 2262-2275. http://dx.doi.org/10.1016/j.ecolmodel.2010.11.009
[74] Bazzaz, F.A. (1998) Tropical Forests in a Future Climate: Changes in Biological Diversity and Impact on the Global Carbon Cycle. Climatic Change, 39, 317-336. http://dx.doi.org/10.1023/A:1005359605003
[75] Dai, L., Jia, J., Yu, D., et al. (2013) Effects of Climate Change on Biomass Carbon Sequestration in Old-Growth Forest Ecosystems on Changbai Mountain in Northeast China. Forest Ecology and Management, 300, 106-116. http://dx.doi.org/10.1016/j.foreco.2012.06.046
[76] Mäkipää, R., Karjalainen, T., Pussinen, A. and Kellomäki, S. (1999) Effects of Climate Change and Nitrogen Deposition on the Carbon Sequestration of a Forest Ecosystem in the Boreal Zone. Canadian Journal of Forest Research, 29, 1490-1501. http://dx.doi.org/10.1139/x99-123
[77] Zhao, J., Yan, X., Jia, G. (2012) Simulating Net Carbon Budget of Forest Ecosystems and Its Response to Climate Change in Northeastern China Using Improved FORCCHN. Chinese Geographical Science, 22, 29-41. http://dx.doi.org/10.1007/s11769-012-0512-6
[78] Karjalainen, T., LiskiJari, P.A., et al. (2003) Scenario Analysis of the Impacts of Forest Management and Climate Change on the European Forest Sector Carbon Budget. Forest Policy and Economics, 5, 141-155. http://dx.doi.org/10.1016/S1389-9341(03)00021-2
[79] Solomon, A.M. and Leemans, R. (1997) Boreal Forest Carbon Stocks and Wood Supply: Past, Present and Future Responses to Changing Climate, Agriculture and Species Availability. Agricultural and Forest Meteorology, 84, 137- 151. http://dx.doi.org/10.1016/S0168-1923(96)02382-9
[80] 颜廷武, 尤文忠. 森林生态系统应对气候变化响应研究综述[J]. 环境保护与循环经济, 2010, 30(12): 70-73.